Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1207

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,0,1,2,3,0,1,2,2,0,0,1,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1207']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+41t^5+37t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1207']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 288*K1**4*K2 - 2672*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 128*K1**3*K3 - 2048*K1**2*K2**2 - 160*K1**2*K2*K4 + 5496*K1**2*K2 - 880*K1**2*K3**2 - 96*K1**2*K3*K5 - 96*K1**2*K4**2 - 32*K1**2*K5**2 - 3796*K1**2 - 192*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 4064*K1*K2*K3 + 1744*K1*K3*K4 + 544*K1*K4*K5 + 80*K1*K5*K6 - 152*K2**4 - 80*K2**2*K3**2 - 16*K2**2*K4**2 + 728*K2**2*K4 - 3364*K2**2 + 360*K2*K3*K5 + 32*K2*K4*K6 - 1904*K3**2 - 1038*K4**2 - 364*K5**2 - 44*K6**2 + 3852
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1207']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3567', 'vk6.3587', 'vk6.3593', 'vk6.3814', 'vk6.3816', 'vk6.3845', 'vk6.3847', 'vk6.6976', 'vk6.6990', 'vk6.7007', 'vk6.7021', 'vk6.7198', 'vk6.7208', 'vk6.7228', 'vk6.15342', 'vk6.15353', 'vk6.15469', 'vk6.15478', 'vk6.33975', 'vk6.34021', 'vk6.34042', 'vk6.34436', 'vk6.48211', 'vk6.48233', 'vk6.48373', 'vk6.49946', 'vk6.49965', 'vk6.49995', 'vk6.53987', 'vk6.54002', 'vk6.54043', 'vk6.54491']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U4U5O6O5U1U6U3
R3 orbit {'O1O2O3O4U2U4U5O6O5U1U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U4O6O5U6U1U3
Gauss code of K* O1O2O3U4U3O5O4O6U5U1U6U2
Gauss code of -K* O1O2O3U4U2O4O5O6U5U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 1 1 0],[ 2 0 -1 3 1 2 0],[ 2 1 0 2 1 2 0],[-2 -3 -2 0 0 -1 -1],[-1 -1 -1 0 0 -1 0],[-1 -2 -2 1 1 0 0],[ 0 0 0 1 0 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -1 -1 -2 -3],[-1 0 0 -1 0 -1 -1],[-1 1 1 0 0 -2 -2],[ 0 1 0 0 0 0 0],[ 2 2 1 2 0 0 1],[ 2 3 1 2 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,1,1,2,3,1,0,1,1,0,2,2,0,0,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,0,1,2,3,0,1,2,2,0,0,1,-1,0,1]
Phi of -K [-2,-2,0,1,1,2,-1,2,1,2,2,2,1,2,1,1,1,1,-1,0,1]
Phi of K* [-2,-1,-1,0,2,2,0,1,1,1,2,1,1,1,1,1,2,2,2,2,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,0,1,2,3,0,1,2,2,0,0,1,-1,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+27t^4+20t^2+1
Outer characteristic polynomial t^7+41t^5+37t^3+5t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 288*K1**4*K2 - 2672*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 128*K1**3*K3 - 2048*K1**2*K2**2 - 160*K1**2*K2*K4 + 5496*K1**2*K2 - 880*K1**2*K3**2 - 96*K1**2*K3*K5 - 96*K1**2*K4**2 - 32*K1**2*K5**2 - 3796*K1**2 - 192*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 4064*K1*K2*K3 + 1744*K1*K3*K4 + 544*K1*K4*K5 + 80*K1*K5*K6 - 152*K2**4 - 80*K2**2*K3**2 - 16*K2**2*K4**2 + 728*K2**2*K4 - 3364*K2**2 + 360*K2*K3*K5 + 32*K2*K4*K6 - 1904*K3**2 - 1038*K4**2 - 364*K5**2 - 44*K6**2 + 3852
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}]]
If K is slice False
Contact