Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,1,1,1,1,1,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1209'] |
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1209', '6.1245', '6.1509', '6.1541', '6.1704', '6.1778', '6.1914'] |
Outer characteristic polynomial of the knot is: t^7+40t^5+32t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1209'] |
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 256*K1**4*K2 - 848*K1**4 + 160*K1**3*K2*K3 - 352*K1**3*K3 + 192*K1**2*K2**3 - 1840*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 128*K1**2*K2*K4 + 3800*K1**2*K2 - 304*K1**2*K3**2 - 16*K1**2*K4**2 - 32*K1**2*K5**2 - 3112*K1**2 + 64*K1*K2**3*K3 - 512*K1*K2**2*K3 - 192*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 3328*K1*K2*K3 - 32*K1*K2*K4*K5 + 664*K1*K3*K4 + 216*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 352*K2**4 - 32*K2**3*K6 - 176*K2**2*K3**2 - 64*K2**2*K4**2 + 800*K2**2*K4 - 2458*K2**2 + 392*K2*K3*K5 + 56*K2*K4*K6 - 1232*K3**2 - 460*K4**2 - 184*K5**2 - 22*K6**2 + 2498 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1209'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4434', 'vk6.4529', 'vk6.5816', 'vk6.5943', 'vk6.7881', 'vk6.7992', 'vk6.9303', 'vk6.9422', 'vk6.10169', 'vk6.10240', 'vk6.10387', 'vk6.17877', 'vk6.17940', 'vk6.18281', 'vk6.18618', 'vk6.24384', 'vk6.24684', 'vk6.25169', 'vk6.30064', 'vk6.30125', 'vk6.30906', 'vk6.31029', 'vk6.32094', 'vk6.32213', 'vk6.36891', 'vk6.37270', 'vk6.37351', 'vk6.43819', 'vk6.44108', 'vk6.44433', 'vk6.50528', 'vk6.50613', 'vk6.51133', 'vk6.51998', 'vk6.52093', 'vk6.55828', 'vk6.56071', 'vk6.60554', 'vk6.60894', 'vk6.65963'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U5U3O5O6U4U1U6 |
R3 orbit | {'O1O2O3U1O4U5U3O5O6U2U4U6', 'O1O2O3O4U2U5U3O5O6U4U1U6'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4U5U4U1O5O6U2U6U3 |
Gauss code of K* | O1O2O3U2U4O5O6O4U6U1U3U5 |
Gauss code of -K* | O1O2O3U1U4O5O4O6U3U5U6U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -2 1 1 -1 2],[ 1 0 -2 1 2 0 2],[ 2 2 0 1 2 1 1],[-1 -1 -1 0 0 -1 1],[-1 -2 -2 0 0 -1 1],[ 1 0 -1 1 1 0 2],[-2 -2 -1 -1 -1 -2 0]] |
Primitive based matrix | [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -2 -2 -1],[-1 1 0 0 -1 -1 -1],[-1 1 0 0 -1 -2 -2],[ 1 2 1 1 0 0 -1],[ 1 2 1 2 0 0 -2],[ 2 1 1 2 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,1,1,2,1,1,2,2,1,0,1,1,1,1,2,2,0,1,2] |
Phi over symmetry | [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,1,1,1,1,1,0,0,0] |
Phi of -K | [-2,-1,-1,1,1,2,-1,0,1,2,3,0,0,1,1,1,1,1,0,0,0] |
Phi of K* | [-2,-1,-1,1,1,2,0,0,1,1,3,0,0,1,1,1,1,2,0,-1,0] |
Phi of -K* | [-2,-1,-1,1,1,2,1,2,1,2,1,0,1,1,2,1,2,2,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | z^2+14z+25 |
Enhanced Jones-Krushkal polynomial | w^3z^2+14w^2z+25w |
Inner characteristic polynomial | t^6+28t^4+18t^2 |
Outer characteristic polynomial | t^7+40t^5+32t^3+3t |
Flat arrow polynomial | 4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
2-strand cable arrow polynomial | -64*K1**4*K2**2 + 256*K1**4*K2 - 848*K1**4 + 160*K1**3*K2*K3 - 352*K1**3*K3 + 192*K1**2*K2**3 - 1840*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 128*K1**2*K2*K4 + 3800*K1**2*K2 - 304*K1**2*K3**2 - 16*K1**2*K4**2 - 32*K1**2*K5**2 - 3112*K1**2 + 64*K1*K2**3*K3 - 512*K1*K2**2*K3 - 192*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 3328*K1*K2*K3 - 32*K1*K2*K4*K5 + 664*K1*K3*K4 + 216*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 352*K2**4 - 32*K2**3*K6 - 176*K2**2*K3**2 - 64*K2**2*K4**2 + 800*K2**2*K4 - 2458*K2**2 + 392*K2*K3*K5 + 56*K2*K4*K6 - 1232*K3**2 - 460*K4**2 - 184*K5**2 - 22*K6**2 + 2498 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}]] |
If K is slice | False |