Gauss code |
O1O2O3O4U2U5U4O5O6U1U6U3 |
R3 orbit |
{'O1O2O3O4U2U5U4O5O6U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U2U4O5O4O6U5U1U6U3 |
Gauss code of -K* |
O1O2O3U2U4O5O4O6U5U1U6U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 2 2 -1 1],[ 2 0 -1 3 2 1 1],[ 2 1 0 2 1 1 0],[-2 -3 -2 0 1 -3 0],[-2 -2 -1 -1 0 -2 0],[ 1 -1 -1 3 2 0 1],[-1 -1 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 -1 -2],[-2 0 0 -3 -2],[-1 0 0 -1 0],[ 1 3 1 0 -1],[ 2 2 0 1 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-2,-1,1,2,0,3,2,1,0,1] |
Phi over symmetry |
[-2,-1,1,2,0,3,2,1,0,1] |
Phi of -K |
[-2,-1,1,2,0,3,2,1,0,1] |
Phi of K* |
[-2,-1,1,2,1,0,2,1,3,0] |
Phi of -K* |
[-2,-1,1,2,1,0,2,1,3,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
17z+35 |
Enhanced Jones-Krushkal polynomial |
17w^2z+35w |
Inner characteristic polynomial |
t^4+15t^2+4 |
Outer characteristic polynomial |
t^5+25t^3+14t |
Flat arrow polynomial |
-12*K1**2 - 8*K1*K2 + 4*K1 - 4*K2**2 + 6*K2 + 4*K3 + 2*K4 + 9 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 1344*K1**4*K2 - 3264*K1**4 + 448*K1**3*K2*K3 + 256*K1**3*K3*K4 + 256*K1**2*K2**3 - 3360*K1**2*K2**2 + 5152*K1**2*K2 - 1248*K1**2*K3**2 - 576*K1**2*K4**2 - 64*K1**2*K5**2 - 3320*K1**2 + 4032*K1*K2*K3 + 2208*K1*K3*K4 + 640*K1*K4*K5 + 112*K1*K5*K6 - 368*K2**4 - 224*K2**2*K3**2 - 32*K2**2*K4**2 + 336*K2**2*K4 - 2768*K2**2 + 448*K2*K3*K5 + 64*K2*K4*K6 - 96*K3**4 - 128*K3**2*K4**2 + 192*K3**2*K6 - 2120*K3**2 + 128*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1044*K4**2 - 400*K5**2 - 136*K6**2 - 32*K7**2 - 4*K8**2 + 3966 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |