| Gauss code | O1O2O3O4U2U5U4O5O6U1U6U3 | 
| R3 orbit | {'O1O2O3O4U2U5U4O5O6U1U6U3'} | 
| R3 orbit length | 1 | 
| Gauss code of -K | Same | 
| Gauss code of K* | O1O2O3U2U4O5O4O6U5U1U6U3 | 
| Gauss code of -K* | O1O2O3U2U4O5O4O6U5U1U6U3 | 
| Diagrammatic symmetry type | r | 
| Flat genus of the diagram | 2 | 
| If K is checkerboard colorable | False | 
| If K is almost classical | False | 
| Based matrix from Gauss code | [[ 0 -2 -2 2 2 -1 1],[ 2 0 -1 3 2 1 1],[ 2 1 0 2 1 1 0],[-2 -3 -2 0 1 -3 0],[-2 -2 -1 -1 0 -2 0],[ 1 -1 -1 3 2 0 1],[-1 -1 0 0 0 -1 0]] | 
| Primitive based matrix | [[ 0 2 1 -1 -2],[-2 0 0 -3 -2],[-1 0 0 -1 0],[ 1 3 1 0 -1],[ 2 2 0 1 0]] | 
| If based matrix primitive | False | 
| Phi of primitive based matrix | [-2,-1,1,2,0,3,2,1,0,1] | 
| Phi over symmetry | [-2,-1,1,2,0,3,2,1,0,1] | 
| Phi of -K | [-2,-1,1,2,0,3,2,1,0,1] | 
| Phi of K* | [-2,-1,1,2,1,0,2,1,3,0] | 
| Phi of -K* | [-2,-1,1,2,1,0,2,1,3,0] | 
| Symmetry type of based matrix | r | 
| u-polynomial | 0 | 
| Normalized Jones-Krushkal polynomial | 17z+35 | 
| Enhanced Jones-Krushkal polynomial | 17w^2z+35w | 
| Inner characteristic polynomial | t^4+15t^2+4 | 
| Outer characteristic polynomial | t^5+25t^3+14t | 
| Flat arrow polynomial | -12*K1**2 - 8*K1*K2 + 4*K1 - 4*K2**2 + 6*K2 + 4*K3 + 2*K4 + 9 | 
| 2-strand cable arrow polynomial | -384*K1**4*K2**2 + 1344*K1**4*K2 - 3264*K1**4 + 448*K1**3*K2*K3 + 256*K1**3*K3*K4 + 256*K1**2*K2**3 - 3360*K1**2*K2**2 + 5152*K1**2*K2 - 1248*K1**2*K3**2 - 576*K1**2*K4**2 - 64*K1**2*K5**2 - 3320*K1**2 + 4032*K1*K2*K3 + 2208*K1*K3*K4 + 640*K1*K4*K5 + 112*K1*K5*K6 - 368*K2**4 - 224*K2**2*K3**2 - 32*K2**2*K4**2 + 336*K2**2*K4 - 2768*K2**2 + 448*K2*K3*K5 + 64*K2*K4*K6 - 96*K3**4 - 128*K3**2*K4**2 + 192*K3**2*K6 - 2120*K3**2 + 128*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1044*K4**2 - 400*K5**2 - 136*K6**2 - 32*K7**2 - 4*K8**2 + 3966 | 
| Genus of based matrix | 1 | 
| Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] | 
| If K is slice | False |