Gauss code |
O1O2O3O4U2U5U4O6O5U1U6U3 |
R3 orbit |
{'O1O2O3O4U2U5U4O6O5U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U4U2O5O4O6U5U1U6U3 |
Gauss code of -K* |
O1O2O3U4U2O5O4O6U5U1U6U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 2 2 0 0],[ 2 0 -1 3 2 1 0],[ 2 1 0 2 1 1 0],[-2 -3 -2 0 1 -2 -1],[-2 -2 -1 -1 0 -2 -1],[ 0 -1 -1 2 2 0 0],[ 0 0 0 1 1 0 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -2 -2],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -2 -1 -2],[ 0 1 1 0 0 0 0],[ 0 2 2 0 0 -1 -1],[ 2 2 1 0 1 0 1],[ 2 3 2 0 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,2,2,-1,1,2,2,3,1,2,1,2,0,0,0,1,1,-1] |
Phi over symmetry |
[-2,-2,0,0,2,2,-1,0,1,2,3,0,1,1,2,0,1,1,2,2,-1] |
Phi of -K |
[-2,-2,0,0,2,2,-1,1,2,2,3,1,2,1,2,0,0,0,1,1,-1] |
Phi of K* |
[-2,-2,0,0,2,2,-1,0,1,2,3,0,1,1,2,0,1,1,2,2,-1] |
Phi of -K* |
[-2,-2,0,0,2,2,-1,0,1,2,3,0,1,1,2,0,1,1,2,2,-1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z^2+20z+13 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+20w^2z+13 |
Inner characteristic polynomial |
t^6+32t^4+12t^2 |
Outer characteristic polynomial |
t^7+48t^5+44t^3 |
Flat arrow polynomial |
8*K1**2*K2 - 8*K1**2 - 4*K2**2 + 5 |
2-strand cable arrow polynomial |
-64*K2**4*K4**2 + 256*K2**4*K4 - 1280*K2**4 + 128*K2**2*K4**3 - 800*K2**2*K4**2 + 2528*K2**2*K4 - 1168*K2**2 + 496*K2*K4*K6 - 48*K4**4 - 904*K4**2 - 96*K6**2 + 950 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |