Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1215

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,1,1,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1215', '7.43831']
Arrow polynomial of the knot is: 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.324', '6.672', '6.953', '6.1196', '6.1215', '6.1216', '6.1699']
Outer characteristic polynomial of the knot is: t^7+35t^5+51t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1215', '7.43831']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 512*K1**4*K2 - 960*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 128*K1**2*K2**4 + 544*K1**2*K2**3 - 2864*K1**2*K2**2 + 3008*K1**2*K2 - 128*K1**2*K3**2 - 112*K1**2*K4**2 - 2008*K1**2 + 352*K1*K2**3*K3 + 2392*K1*K2*K3 + 432*K1*K3*K4 + 88*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 + 192*K2**4*K4 - 1328*K2**4 - 464*K2**2*K3**2 - 128*K2**2*K4**2 + 976*K2**2*K4 - 1030*K2**2 + 240*K2*K3*K5 + 72*K2*K4*K6 - 784*K3**2 - 420*K4**2 - 64*K5**2 - 18*K6**2 + 1906
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1215']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11296', 'vk6.11374', 'vk6.12557', 'vk6.12668', 'vk6.18355', 'vk6.18694', 'vk6.24797', 'vk6.25256', 'vk6.30980', 'vk6.31107', 'vk6.32160', 'vk6.32279', 'vk6.36979', 'vk6.37434', 'vk6.44162', 'vk6.44483', 'vk6.52052', 'vk6.52135', 'vk6.52891', 'vk6.52954', 'vk6.56129', 'vk6.56354', 'vk6.60646', 'vk6.60989', 'vk6.63669', 'vk6.63714', 'vk6.64097', 'vk6.64142', 'vk6.65779', 'vk6.66039', 'vk6.68781', 'vk6.68990']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U5U4O6O5U3U1U6
R3 orbit {'O1O2O3O4U2U5U4O6O5U3U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U4U2O6O5U1U6U3
Gauss code of K* O1O2O3U4U2O5O6O4U6U1U5U3
Gauss code of -K* O1O2O3U4U1O5O4O6U5U3U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 0 2 0 1],[ 1 0 -2 1 2 0 1],[ 2 2 0 2 1 1 1],[ 0 -1 -2 0 1 -1 0],[-2 -2 -1 -1 0 -2 -1],[ 0 0 -1 1 2 0 1],[-1 -1 -1 0 1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -2 -1],[-1 1 0 0 -1 -1 -1],[ 0 1 0 0 -1 -1 -2],[ 0 2 1 1 0 0 -1],[ 1 2 1 1 0 0 -2],[ 2 1 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,2,1,0,1,1,1,1,1,2,0,1,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,1,1,1,0,0,0]
Phi of -K [-2,-1,0,0,1,2,-1,0,1,2,3,0,1,1,1,1,1,1,0,0,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,1,3,0,1,1,2,1,1,1,0,0,-1]
Phi of -K* [-2,-1,0,0,1,2,2,1,2,1,1,0,1,1,2,1,1,2,0,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial -6w^3z+15w^2z+19w
Inner characteristic polynomial t^6+25t^4+15t^2
Outer characteristic polynomial t^7+35t^5+51t^3
Flat arrow polynomial 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -192*K1**4*K2**2 + 512*K1**4*K2 - 960*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 128*K1**2*K2**4 + 544*K1**2*K2**3 - 2864*K1**2*K2**2 + 3008*K1**2*K2 - 128*K1**2*K3**2 - 112*K1**2*K4**2 - 2008*K1**2 + 352*K1*K2**3*K3 + 2392*K1*K2*K3 + 432*K1*K3*K4 + 88*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 + 192*K2**4*K4 - 1328*K2**4 - 464*K2**2*K3**2 - 128*K2**2*K4**2 + 976*K2**2*K4 - 1030*K2**2 + 240*K2*K3*K5 + 72*K2*K4*K6 - 784*K3**2 - 420*K4**2 - 64*K5**2 - 18*K6**2 + 1906
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice True
Contact