Gauss code |
O1O2O3O4O5O6U3U6U1U4U5U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U6U1U4U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U2U3U6U1U4 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U5U2U3U6U1U4 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 -3 1 3 1],[ 3 0 3 -1 2 3 1],[-1 -3 0 -3 0 2 1],[ 3 1 3 0 2 3 1],[-1 -2 0 -2 0 1 0],[-3 -3 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 1 -3 -3],[-3 0 0 -1 -2 -3 -3],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 0 -2 -2],[-1 2 1 0 0 -3 -3],[ 3 3 1 2 3 0 1],[ 3 3 1 2 3 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,-1,3,3,0,1,2,3,3,0,1,1,1,0,2,2,3,3,-1] |
Phi over symmetry |
[-3,-3,1,1,1,3,-1,1,2,3,3,1,2,3,3,0,-1,0,0,1,2] |
Phi of -K |
[-3,-3,1,1,1,3,-1,1,2,3,3,1,2,3,3,0,-1,0,0,1,2] |
Phi of K* |
[-3,-1,-1,-1,3,3,0,1,2,3,3,0,1,1,1,0,2,2,3,3,-1] |
Phi of -K* |
[-3,-3,1,1,1,3,-1,1,2,3,3,1,2,3,3,0,-1,0,0,1,2] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+53t^4+21t^2+1 |
Outer characteristic polynomial |
t^7+83t^5+43t^3+5t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
512*K1**4*K2**3 - 1792*K1**4*K2**2 + 2944*K1**4*K2 - 4608*K1**4 - 512*K1**3*K2**2*K3 + 704*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 - 768*K1**2*K2**4 + 2816*K1**2*K2**3 - 10240*K1**2*K2**2 - 960*K1**2*K2*K4 + 11248*K1**2*K2 - 256*K1**2*K3**2 - 224*K1**2*K4**2 - 6312*K1**2 + 1792*K1*K2**3*K3 + 512*K1*K2**2*K3*K4 - 1472*K1*K2**2*K3 + 384*K1*K2**2*K4*K5 + 128*K1*K2**2*K5*K6 - 576*K1*K2**2*K5 - 576*K1*K2*K3*K4 - 320*K1*K2*K3*K6 + 9456*K1*K2*K3 - 192*K1*K2*K4*K5 + 1952*K1*K3*K4 + 384*K1*K4*K5 + 64*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 64*K2**4*K4**2 + 320*K2**4*K4 - 2448*K2**4 + 320*K2**3*K3*K5 + 128*K2**3*K4*K6 - 64*K2**3*K6 + 128*K2**2*K3**2*K6 - 1568*K2**2*K3**2 - 856*K2**2*K4**2 + 2856*K2**2*K4 - 416*K2**2*K5**2 - 176*K2**2*K6**2 - 4782*K2**2 - 128*K2*K3**2*K4 + 1264*K2*K3*K5 + 520*K2*K4*K6 + 16*K2*K5*K7 + 64*K3**2*K6 - 2856*K3**2 - 1388*K4**2 - 272*K5**2 - 90*K6**2 + 6106 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {5}, {1, 3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |