Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1224

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,2,2,2,1,1,1,1,0,1,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1224']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+32t^5+17t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1224']
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 256*K1**4*K2**2 + 768*K1**4*K2 - 1120*K1**4 + 224*K1**3*K2*K3 - 944*K1**2*K2**2 + 1496*K1**2*K2 - 288*K1**2*K3**2 - 112*K1**2*K4**2 - 352*K1**2 + 992*K1*K2*K3 + 336*K1*K3*K4 + 88*K1*K4*K5 - 104*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 136*K2**2*K4 - 620*K2**2 + 72*K2*K3*K5 + 32*K2*K4*K6 - 332*K3**2 - 130*K4**2 - 28*K5**2 - 4*K6**2 + 736
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1224']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11262', 'vk6.11340', 'vk6.12523', 'vk6.12634', 'vk6.17051', 'vk6.17292', 'vk6.17627', 'vk6.18918', 'vk6.18994', 'vk6.19352', 'vk6.19647', 'vk6.22261', 'vk6.24091', 'vk6.24183', 'vk6.25514', 'vk6.26128', 'vk6.26548', 'vk6.28317', 'vk6.30944', 'vk6.31067', 'vk6.31240', 'vk6.31589', 'vk6.32120', 'vk6.32239', 'vk6.32809', 'vk6.35566', 'vk6.36015', 'vk6.36424', 'vk6.37647', 'vk6.39941', 'vk6.40113', 'vk6.43525', 'vk6.44781', 'vk6.46485', 'vk6.52028', 'vk6.53393', 'vk6.55458', 'vk6.56652', 'vk6.65392', 'vk6.66107']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1U5O6O5U4U2U6
R3 orbit {'O1O2O3U2O4U1U5O6O5U3U4U6', 'O1O2O3O4U3U1U5O6O5U4U2U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U3U1O6O5U6U4U2
Gauss code of K* O1O2O3U4U3O5O6O4U2U6U1U5
Gauss code of -K* O1O2O3U4U1O4O5O6U3U6U2U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 1 1 1],[ 2 0 2 0 2 2 2],[ 0 -2 0 -1 1 0 1],[ 1 0 1 0 1 1 1],[-1 -2 -1 -1 0 -1 0],[-1 -2 0 -1 1 0 1],[-1 -2 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 -1 -1 -2],[-1 -1 0 0 -1 -1 -2],[ 0 0 1 1 0 -1 -2],[ 1 1 1 1 1 0 0],[ 2 2 2 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,1,1,2,1,1,2,1,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,2,2,2,1,1,1,1,0,1,1,1,1,0]
Phi of -K [-2,-1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,0,1,1]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,1,1,1,1,1,0,1,1,0,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,2,2,2,1,1,1,1,0,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+24t^4
Outer characteristic polynomial t^7+32t^5+17t^3
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -448*K1**6 - 256*K1**4*K2**2 + 768*K1**4*K2 - 1120*K1**4 + 224*K1**3*K2*K3 - 944*K1**2*K2**2 + 1496*K1**2*K2 - 288*K1**2*K3**2 - 112*K1**2*K4**2 - 352*K1**2 + 992*K1*K2*K3 + 336*K1*K3*K4 + 88*K1*K4*K5 - 104*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 136*K2**2*K4 - 620*K2**2 + 72*K2*K3*K5 + 32*K2*K4*K6 - 332*K3**2 - 130*K4**2 - 28*K5**2 - 4*K6**2 + 736
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact