| Gauss code |
O1O2O3O4U3U2U5O6O5U1U4U6 |
| R3 orbit |
{'O1O2O3O4U3U2U5O6O5U1U4U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U1U4O6O5U6U3U2 |
| Gauss code of K* |
O1O2O3U4U3O5O6O4U5U2U1U6 |
| Gauss code of -K* |
O1O2O3U4U1O4O5O6U2U6U5U3 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -1 -1 2 1 1],[ 2 0 0 0 3 2 1],[ 1 0 0 0 2 1 1],[ 1 0 0 0 1 1 1],[-2 -3 -2 -1 0 -2 0],[-1 -2 -1 -1 2 0 1],[-1 -1 -1 -1 0 -1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -1 -2],[ 1 1 1 1 0 0 0],[ 1 2 1 1 0 0 0],[ 2 3 1 2 0 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,2,1,2,3,1,1,1,1,1,1,2,0,0,0] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,1,2,0,1,1] |
| Phi of -K |
[-2,-1,-1,1,1,2,1,1,1,2,1,0,1,1,1,1,1,2,-1,-1,1] |
| Phi of K* |
[-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,1,2,0,1,1] |
| Phi of -K* |
[-2,-1,-1,1,1,2,0,0,1,2,3,0,1,1,1,1,1,2,-1,0,2] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
3z^2+16z+21 |
| Enhanced Jones-Krushkal polynomial |
3w^3z^2-8w^3z+24w^2z+21w |
| Inner characteristic polynomial |
t^6+28t^4+13t^2+1 |
| Outer characteristic polynomial |
t^7+40t^5+37t^3+8t |
| Flat arrow polynomial |
-4*K1*K2 + 2*K1 + 2*K3 + 1 |
| 2-strand cable arrow polynomial |
-784*K1**4 + 224*K1**3*K3*K4 - 64*K1**3*K3 - 800*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 512*K1**2*K2*K4 + 2904*K1**2*K2 - 624*K1**2*K3**2 - 192*K1**2*K3*K5 - 592*K1**2*K4**2 - 3240*K1**2 - 512*K1*K2**2*K3 - 448*K1*K2*K3*K4 + 3096*K1*K2*K3 - 96*K1*K2*K4*K5 + 2472*K1*K3*K4 + 856*K1*K4*K5 + 24*K1*K5*K6 - 112*K2**2*K4**2 + 872*K2**2*K4 - 2500*K2**2 + 344*K2*K3*K5 + 112*K2*K4*K6 - 1820*K3**2 - 1268*K4**2 - 332*K5**2 - 28*K6**2 + 2922 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}]] |
| If K is slice |
False |