Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,1,2,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1230'] |
Arrow polynomial of the knot is: -4*K1*K2 + 2*K1 + 2*K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.540', '6.925', '6.1021', '6.1117', '6.1120', '6.1135', '6.1227', '6.1230', '6.1260', '6.1682', '6.1685', '6.1922'] |
Outer characteristic polynomial of the knot is: t^7+40t^5+37t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1230'] |
2-strand cable arrow polynomial of the knot is: -784*K1**4 + 224*K1**3*K3*K4 - 64*K1**3*K3 - 800*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 512*K1**2*K2*K4 + 2904*K1**2*K2 - 624*K1**2*K3**2 - 192*K1**2*K3*K5 - 592*K1**2*K4**2 - 3240*K1**2 - 512*K1*K2**2*K3 - 448*K1*K2*K3*K4 + 3096*K1*K2*K3 - 96*K1*K2*K4*K5 + 2472*K1*K3*K4 + 856*K1*K4*K5 + 24*K1*K5*K6 - 112*K2**2*K4**2 + 872*K2**2*K4 - 2500*K2**2 + 344*K2*K3*K5 + 112*K2*K4*K6 - 1820*K3**2 - 1268*K4**2 - 332*K5**2 - 28*K6**2 + 2922 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1230'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10145', 'vk6.10210', 'vk6.10353', 'vk6.10432', 'vk6.16696', 'vk6.19072', 'vk6.19121', 'vk6.19252', 'vk6.19545', 'vk6.23015', 'vk6.23132', 'vk6.25701', 'vk6.25750', 'vk6.26066', 'vk6.26443', 'vk6.29932', 'vk6.29991', 'vk6.30089', 'vk6.34998', 'vk6.35123', 'vk6.37795', 'vk6.37857', 'vk6.42570', 'vk6.44655', 'vk6.51637', 'vk6.51740', 'vk6.54908', 'vk6.56589', 'vk6.59335', 'vk6.64872', 'vk6.66181', 'vk6.66214'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U2U5O6O5U1U4U6 |
R3 orbit | {'O1O2O3O4U3U2U5O6O5U1U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1U4O6O5U6U3U2 |
Gauss code of K* | O1O2O3U4U3O5O6O4U5U2U1U6 |
Gauss code of -K* | O1O2O3U4U1O4O5O6U2U6U5U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 -1 2 1 1],[ 2 0 0 0 3 2 1],[ 1 0 0 0 2 1 1],[ 1 0 0 0 1 1 1],[-2 -3 -2 -1 0 -2 0],[-1 -2 -1 -1 2 0 1],[-1 -1 -1 -1 0 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -1 -2],[ 1 1 1 1 0 0 0],[ 1 2 1 1 0 0 0],[ 2 3 1 2 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,1,1,2,0,2,1,2,3,1,1,1,1,1,1,2,0,0,0] |
Phi over symmetry | [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,1,2,0,1,1] |
Phi of -K | [-2,-1,-1,1,1,2,1,1,1,2,1,0,1,1,1,1,1,2,-1,-1,1] |
Phi of K* | [-2,-1,-1,1,1,2,-1,1,1,2,1,1,1,1,1,1,1,2,0,1,1] |
Phi of -K* | [-2,-1,-1,1,1,2,0,0,1,2,3,0,1,1,1,1,1,2,-1,0,2] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2-8w^3z+24w^2z+21w |
Inner characteristic polynomial | t^6+28t^4+13t^2+1 |
Outer characteristic polynomial | t^7+40t^5+37t^3+8t |
Flat arrow polynomial | -4*K1*K2 + 2*K1 + 2*K3 + 1 |
2-strand cable arrow polynomial | -784*K1**4 + 224*K1**3*K3*K4 - 64*K1**3*K3 - 800*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 512*K1**2*K2*K4 + 2904*K1**2*K2 - 624*K1**2*K3**2 - 192*K1**2*K3*K5 - 592*K1**2*K4**2 - 3240*K1**2 - 512*K1*K2**2*K3 - 448*K1*K2*K3*K4 + 3096*K1*K2*K3 - 96*K1*K2*K4*K5 + 2472*K1*K3*K4 + 856*K1*K4*K5 + 24*K1*K5*K6 - 112*K2**2*K4**2 + 872*K2**2*K4 - 2500*K2**2 + 344*K2*K3*K5 + 112*K2*K4*K6 - 1820*K3**2 - 1268*K4**2 - 332*K5**2 - 28*K6**2 + 2922 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice | False |