Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,0,1,1,1,0,-1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1233', '7.24434', '7.41351', '7.41492'] |
Arrow polynomial of the knot is: 8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.414', '6.594', '6.608', '6.790', '6.1233', '6.1285', '6.1293', '6.1513', '6.1752', '6.1787', '6.1810', '6.1818', '6.1867', '6.1868', '6.1923'] |
Outer characteristic polynomial of the knot is: t^7+15t^5+27t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1233', '7.41351'] |
2-strand cable arrow polynomial of the knot is: -2048*K1**6 - 4352*K1**4*K2**2 + 7424*K1**4*K2 - 7072*K1**4 + 3520*K1**3*K2*K3 - 1056*K1**3*K3 - 3136*K1**2*K2**4 + 7552*K1**2*K2**3 + 1024*K1**2*K2**2*K4 - 15872*K1**2*K2**2 - 1600*K1**2*K2*K4 + 9200*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K4**2 + 1448*K1**2 + 3648*K1*K2**3*K3 - 3104*K1*K2**2*K3 - 800*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 7104*K1*K2*K3 + 592*K1*K3*K4 + 144*K1*K4*K5 - 704*K2**6 + 1088*K2**4*K4 - 4256*K2**4 - 192*K2**3*K6 - 960*K2**2*K3**2 - 384*K2**2*K4**2 + 2416*K2**2*K4 + 708*K2**2 + 336*K2*K3*K5 + 112*K2*K4*K6 - 404*K3**2 - 120*K4**2 - 20*K5**2 - 4*K6**2 + 1334 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1233'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.76', 'vk6.78', 'vk6.137', 'vk6.141', 'vk6.234', 'vk6.238', 'vk6.277', 'vk6.279', 'vk6.388', 'vk6.392', 'vk6.808', 'vk6.816', 'vk6.1285', 'vk6.1289', 'vk6.1376', 'vk6.1380', 'vk6.1419', 'vk6.1421', 'vk6.1553', 'vk6.1561', 'vk6.2685', 'vk6.2693', 'vk6.2940', 'vk6.2944', 'vk6.14845', 'vk6.14849', 'vk6.16003', 'vk6.16007', 'vk6.25958', 'vk6.25966', 'vk6.33348', 'vk6.33364'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U4U1O5O6U5U6U2 |
R3 orbit | {'O1O2O3O4U3U4U1O5O6U5U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3U5U6O5O6U4U1U2 |
Gauss code of K* | O1O2O3U4U5O4O5O6U3U6U1U2 |
Gauss code of -K* | O1O2O3U2U3O4O5O6U5U6U1U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 1 -1 1 -1 1],[ 1 0 1 -1 1 0 0],[-1 -1 0 -1 1 -1 1],[ 1 1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[ 1 0 1 0 0 0 1],[-1 0 -1 0 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 -1 -1 -1],[-1 0 1 1 -1 -1 -1],[-1 -1 0 0 0 0 -1],[-1 -1 0 0 -1 -1 0],[ 1 1 0 1 0 1 0],[ 1 1 0 1 -1 0 0],[ 1 1 1 0 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,0,1,1,1,0,-1,0,0] |
Phi over symmetry | [-1,-1,-1,1,1,1,-1,-1,1,1,1,0,0,0,1,1,1,0,-1,0,0] |
Phi of -K | [-1,-1,-1,1,1,1,-1,0,1,1,2,0,1,1,2,1,2,1,-1,-1,0] |
Phi of K* | [-1,-1,-1,1,1,1,-1,0,1,1,2,1,1,1,1,2,2,1,-1,0,0] |
Phi of -K* | [-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,1,1,1,0,1,0,-1,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+21w^2z+27w |
Inner characteristic polynomial | t^6+9t^4+13t^2+1 |
Outer characteristic polynomial | t^7+15t^5+27t^3+5t |
Flat arrow polynomial | 8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial | -2048*K1**6 - 4352*K1**4*K2**2 + 7424*K1**4*K2 - 7072*K1**4 + 3520*K1**3*K2*K3 - 1056*K1**3*K3 - 3136*K1**2*K2**4 + 7552*K1**2*K2**3 + 1024*K1**2*K2**2*K4 - 15872*K1**2*K2**2 - 1600*K1**2*K2*K4 + 9200*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K4**2 + 1448*K1**2 + 3648*K1*K2**3*K3 - 3104*K1*K2**2*K3 - 800*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 7104*K1*K2*K3 + 592*K1*K3*K4 + 144*K1*K4*K5 - 704*K2**6 + 1088*K2**4*K4 - 4256*K2**4 - 192*K2**3*K6 - 960*K2**2*K3**2 - 384*K2**2*K4**2 + 2416*K2**2*K4 + 708*K2**2 + 336*K2*K3*K5 + 112*K2*K4*K6 - 404*K3**2 - 120*K4**2 - 20*K5**2 - 4*K6**2 + 1334 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{5, 6}, {3, 4}, {1, 2}]] |
If K is slice | True |