Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1235

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,0,1,2,1,1,0,1,1,0,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1235', '7.41173']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+18t^5+40t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1235', '7.41173']
2-strand cable arrow polynomial of the knot is: 1536*K1**4*K2 - 3136*K1**4 + 768*K1**3*K2*K3 - 320*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4144*K1**2*K2**2 - 384*K1**2*K2*K4 + 3512*K1**2*K2 - 512*K1**2*K3**2 - 32*K1**2*K4**2 + 208*K1**2 + 320*K1*K2**3*K3 - 864*K1*K2**2*K3 - 192*K1*K2**2*K5 + 2656*K1*K2*K3 + 520*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 632*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 632*K2**2*K4 - 694*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 412*K3**2 - 146*K4**2 - 36*K5**2 - 2*K6**2 + 840
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1235']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.410', 'vk6.460', 'vk6.464', 'vk6.859', 'vk6.912', 'vk6.917', 'vk6.1614', 'vk6.2095', 'vk6.2464', 'vk6.2499', 'vk6.2502', 'vk6.2711', 'vk6.2755', 'vk6.2759', 'vk6.3018', 'vk6.3151', 'vk6.3222', 'vk6.3243', 'vk6.3323', 'vk6.3338', 'vk6.3355', 'vk6.3444', 'vk6.15226', 'vk6.15229', 'vk6.15232', 'vk6.15239', 'vk6.15256', 'vk6.15259', 'vk6.26357', 'vk6.26360', 'vk6.26800', 'vk6.26805', 'vk6.33875', 'vk6.33890', 'vk6.33898', 'vk6.37938', 'vk6.37946', 'vk6.45097', 'vk6.45102', 'vk6.54444']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U4U2O5O6U5U1U6
R3 orbit {'O1O2O3U2O4U3U4O5O6U5U1U6', 'O1O2O3O4U3U4U2O5O6U5U1U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U4U6O5O6U3U1U2
Gauss code of K* O1O2O3U4U5O4O6O5U6U3U1U2
Gauss code of -K* O1O2O3U1U3O4O5O6U5U6U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 -1 1 -1 2],[ 1 0 0 -1 1 0 2],[ 0 0 0 -1 1 0 0],[ 1 1 1 0 1 0 0],[-1 -1 -1 -1 0 0 0],[ 1 0 0 0 0 0 1],[-2 -2 0 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 0 0 -1 -2],[-1 0 0 -1 -1 0 -1],[ 0 0 1 0 -1 0 0],[ 1 0 1 1 0 0 1],[ 1 1 0 0 0 0 0],[ 1 2 1 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,0,0,1,2,1,1,0,1,1,0,0,0,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,0,1,2,1,1,0,1,1,0,0,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,1,3,0,1,1,1,1,2,2,0,2,1]
Phi of K* [-2,-1,0,1,1,1,1,2,1,2,3,0,1,2,1,1,1,0,0,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,1,0,0,0,1,1,0,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial 6w^3z^2+19w^2z+15w
Inner characteristic polynomial t^6+10t^4+17t^2
Outer characteristic polynomial t^7+18t^5+40t^3+3t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial 1536*K1**4*K2 - 3136*K1**4 + 768*K1**3*K2*K3 - 320*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4144*K1**2*K2**2 - 384*K1**2*K2*K4 + 3512*K1**2*K2 - 512*K1**2*K3**2 - 32*K1**2*K4**2 + 208*K1**2 + 320*K1*K2**3*K3 - 864*K1*K2**2*K3 - 192*K1*K2**2*K5 + 2656*K1*K2*K3 + 520*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 632*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 632*K2**2*K4 - 694*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 412*K3**2 - 146*K4**2 - 36*K5**2 - 2*K6**2 + 840
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{6}, {1, 5}, {3, 4}, {2}]]
If K is slice False
Contact