Gauss code |
O1O2O3O4O5O6U3U6U4U1U5U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U6U4U1U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U2U6U3U1U4 |
Gauss code of K* |
O1O2O3O4O5O6U4U6U1U3U5U2 |
Gauss code of -K* |
O1O2O3O4O5O6U5U2U4U6U1U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -3 0 3 1],[ 2 0 2 -2 1 3 1],[-1 -2 0 -3 0 2 1],[ 3 2 3 0 2 3 1],[ 0 -1 0 -2 0 1 0],[-3 -3 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -2 -3],[-3 0 0 -2 -1 -3 -3],[-1 0 0 -1 0 -1 -1],[-1 2 1 0 0 -2 -3],[ 0 1 0 0 0 -1 -2],[ 2 3 1 2 1 0 -2],[ 3 3 1 3 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,2,3,0,2,1,3,3,1,0,1,1,0,2,3,1,2,2] |
Phi over symmetry |
[-3,-2,0,1,1,3,-1,1,1,3,3,1,1,2,2,1,1,2,-1,0,2] |
Phi of -K |
[-3,-2,0,1,1,3,-1,1,1,3,3,1,1,2,2,1,1,2,-1,0,2] |
Phi of K* |
[-3,-1,-1,0,2,3,0,2,2,2,3,1,1,1,1,1,2,3,1,1,-1] |
Phi of -K* |
[-3,-2,0,1,1,3,2,2,1,3,3,1,1,2,3,0,0,1,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+48t^4+16t^2 |
Outer characteristic polynomial |
t^7+72t^5+57t^3+4t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 8*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + 3*K2 + 3*K3 + K4 + 5 |
2-strand cable arrow polynomial |
-128*K1**6 + 704*K1**4*K2 - 2112*K1**4 + 224*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1248*K1**3*K3 - 128*K1**2*K2**4 + 192*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 2304*K1**2*K2**2 + 224*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 448*K1**2*K2*K4 + 6400*K1**2*K2 - 1504*K1**2*K3**2 - 96*K1**2*K3*K5 - 448*K1**2*K4**2 - 96*K1**2*K4*K6 - 4792*K1**2 + 384*K1*K2**3*K3 - 896*K1*K2**2*K3 - 32*K1*K2**2*K5 + 96*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 864*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6184*K1*K2*K3 - 32*K1*K2*K4*K7 - 32*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2464*K1*K3*K4 + 680*K1*K4*K5 + 56*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 432*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 896*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 320*K2**2*K4**2 + 1208*K2**2*K4 - 8*K2**2*K6**2 - 3662*K2**2 - 128*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 808*K2*K3*K5 - 32*K2*K4**2*K6 + 280*K2*K4*K6 + 48*K2*K5*K7 + 8*K2*K6*K8 - 160*K3**4 - 80*K3**2*K4**2 + 168*K3**2*K6 - 2232*K3**2 + 96*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1026*K4**2 - 248*K5**2 - 90*K6**2 - 32*K7**2 - 2*K8**2 + 3978 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |