Gauss code |
O1O2O3O4U3U5U1O6O5U4U6U2 |
R3 orbit |
{'O1O2O3O4U3U5U1O6O5U4U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U4U2O5O4O6U3U6U1U5 |
Gauss code of -K* |
O1O2O3U4U2O5O4O6U3U6U1U5 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -1 1 0 0],[ 1 0 1 0 1 1 0],[-1 -1 0 -1 0 0 0],[ 1 0 1 0 1 1 1],[-1 -1 0 -1 0 -1 0],[ 0 -1 0 -1 1 0 0],[ 0 0 0 -1 0 0 0]] |
Primitive based matrix |
[[ 0 1 0 0 -1],[-1 0 0 0 -1],[ 0 0 0 0 -1],[ 0 0 0 0 -1],[ 1 1 1 1 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-1,0,0,1,0,0,1,0,1,1] |
Phi over symmetry |
[-1,0,0,1,0,0,1,0,1,1] |
Phi of -K |
[-1,0,0,1,0,0,1,0,1,1] |
Phi of K* |
[-1,0,0,1,1,1,1,0,0,0] |
Phi of -K* |
[-1,0,0,1,1,1,1,0,0,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^4+3t^2 |
Outer characteristic polynomial |
t^5+5t^3+2t |
Flat arrow polynomial |
-16*K1**2 + 8*K2 + 9 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 3072*K1**4*K2 - 8480*K1**4 + 960*K1**3*K2*K3 - 1600*K1**3*K3 + 1344*K1**2*K2**3 - 11936*K1**2*K2**2 - 1088*K1**2*K2*K4 + 16320*K1**2*K2 - 352*K1**2*K3**2 - 5632*K1**2 - 1344*K1*K2**2*K3 + 10224*K1*K2*K3 + 912*K1*K3*K4 - 1440*K2**4 + 1744*K2**2*K4 - 5544*K2**2 - 2144*K3**2 - 544*K4**2 + 5782 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |