Gauss code |
O1O2O3O4U3U5U4O6O5U1U2U6 |
R3 orbit |
{'O1O2O3O4U3U5U4O6O5U1U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U3U4O6O5U1U6U2 |
Gauss code of K* |
O1O2O3U4U2O5O6O4U5U6U1U3 |
Gauss code of -K* |
O1O2O3U4U1O5O4O6U5U6U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 -1 2 0 1],[ 2 0 1 -1 2 1 1],[ 0 -1 0 -1 2 -1 0],[ 1 1 1 0 1 0 0],[-2 -2 -2 -1 0 -2 -1],[ 0 -1 1 0 2 0 1],[-1 -1 0 0 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -2 -2 -1 -2],[-1 1 0 0 -1 0 -1],[ 0 2 0 0 -1 -1 -1],[ 0 2 1 1 0 0 -1],[ 1 1 0 1 0 0 1],[ 2 2 1 1 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,2,2,1,2,0,1,0,1,1,1,1,0,1,-1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,1,1,1,2,0,1,0,1,1,1,2,0,2,1] |
Phi of -K |
[-2,-1,0,0,1,2,2,1,1,2,2,0,1,2,2,1,1,0,0,0,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,0,0,2,2,0,1,2,2,1,1,1,0,1,2] |
Phi of -K* |
[-2,-1,0,0,1,2,-1,1,1,1,2,0,1,0,1,1,1,2,0,2,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
11z+23 |
Enhanced Jones-Krushkal polynomial |
-6w^3z+17w^2z+23w |
Inner characteristic polynomial |
t^6+21t^4+31t^2 |
Outer characteristic polynomial |
t^7+31t^5+75t^3 |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 224*K1**4*K2 - 864*K1**4 + 128*K1**3*K2**3*K3 + 320*K1**3*K2*K3 - 512*K1**2*K2**4 + 512*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 - 2832*K1**2*K2**2 + 2552*K1**2*K2 - 320*K1**2*K3**2 - 32*K1**2*K4**2 - 2008*K1**2 + 1408*K1*K2**3*K3 + 96*K1*K2*K3**3 + 3504*K1*K2*K3 + 416*K1*K3*K4 + 64*K1*K4*K5 + 24*K1*K5*K6 - 192*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1184*K2**4 + 224*K2**3*K3*K5 + 64*K2**3*K4*K6 - 1456*K2**2*K3**2 - 144*K2**2*K4**2 + 568*K2**2*K4 - 64*K2**2*K5**2 - 48*K2**2*K6**2 - 1068*K2**2 + 616*K2*K3*K5 + 120*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 48*K3**2*K6 - 1268*K3**2 - 348*K4**2 - 116*K5**2 - 68*K6**2 - 2*K8**2 + 2124 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}]] |
If K is slice |
False |