Gauss code |
O1O2O3O4U3U5U4O6O5U1U6U2 |
R3 orbit |
{'O1O2O3O4U3U5U4O6O5U1U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U4U2O5O4O6U5U6U1U3 |
Gauss code of -K* |
O1O2O3U4U2O5O4O6U5U6U1U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -1 2 0 0],[ 2 0 2 -1 2 1 0],[-1 -2 0 -1 2 -1 -1],[ 1 1 1 0 1 0 0],[-2 -2 -2 -1 0 -2 -1],[ 0 -1 1 0 2 0 0],[ 0 0 1 0 1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -2 -1 -2],[-1 2 0 -1 -1 -1 -2],[ 0 1 1 0 0 0 0],[ 0 2 1 0 0 0 -1],[ 1 1 1 0 0 0 1],[ 2 2 2 0 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,2,1,2,1,2,1,1,1,2,0,0,0,0,1,-1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,0,1,2,2,0,0,1,1,0,1,1,1,2,2] |
Phi of -K |
[-2,-1,0,0,1,2,2,1,2,1,2,1,1,1,2,0,0,0,0,1,-1] |
Phi of K* |
[-2,-1,0,0,1,2,-1,0,1,2,2,0,0,1,1,0,1,1,1,2,2] |
Phi of -K* |
[-2,-1,0,0,1,2,-1,0,1,2,2,0,0,1,1,0,1,1,1,2,2] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
20z+41 |
Enhanced Jones-Krushkal polynomial |
20w^2z+41w |
Inner characteristic polynomial |
t^6+23t^4+23t^2+1 |
Outer characteristic polynomial |
t^7+33t^5+55t^3+7t |
Flat arrow polynomial |
-4*K1**2 - 4*K1*K3 + 4*K2 + 2*K4 + 3 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 256*K1**4*K2 - 1792*K1**4 + 896*K1**3*K2*K3 - 640*K1**3*K3 + 128*K1**2*K2**3 - 2112*K1**2*K2**2 - 320*K1**2*K2*K4 + 4224*K1**2*K2 - 2272*K1**2*K3**2 - 4480*K1**2 - 320*K1*K2**2*K3 + 128*K1*K2*K3**3 - 64*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 7584*K1*K2*K3 - 64*K1*K2*K4*K5 + 2656*K1*K3*K4 + 144*K1*K4*K5 + 176*K1*K5*K6 - 80*K2**4 - 1024*K2**2*K3**2 + 304*K2**2*K4 - 48*K2**2*K6**2 - 3824*K2**2 - 192*K2*K3**2*K4 + 976*K2*K3*K5 + 240*K2*K4*K6 + 32*K2*K6*K8 - 224*K3**4 + 336*K3**2*K6 - 3352*K3**2 - 920*K4**2 - 328*K5**2 - 216*K6**2 - 4*K8**2 + 4514 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {2, 3}]] |
If K is slice |
False |