Gauss code |
O1O2O3O4U5U1U2O5O6U3U4U6 |
R3 orbit |
{'O1O2O3O4U5U1U2O5O6U3U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U1U4O5O6O4U2U3U5U6 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U2U3U5U6 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 2 -2 2],[ 2 0 1 1 2 1 2],[ 0 -1 0 0 1 0 2],[ 0 -1 0 0 1 0 2],[-2 -2 -1 -1 0 -2 1],[ 2 -1 0 0 2 0 2],[-2 -2 -2 -2 -1 -2 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -2 -2],[-2 0 1 -1 -1 -2 -2],[-2 -1 0 -2 -2 -2 -2],[ 0 1 2 0 0 0 -1],[ 0 1 2 0 0 0 -1],[ 2 2 2 0 0 0 -1],[ 2 2 2 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,2,2,-1,1,1,2,2,2,2,2,2,0,0,1,0,1,1] |
Phi over symmetry |
[-2,-2,0,0,2,2,-1,0,0,2,2,1,1,2,2,0,1,2,1,2,1] |
Phi of -K |
[-2,-2,0,0,2,2,-1,1,1,2,2,2,2,2,2,0,0,1,0,1,1] |
Phi of K* |
[-2,-2,0,0,2,2,-1,0,0,2,2,1,1,2,2,0,1,2,1,2,1] |
Phi of -K* |
[-2,-2,0,0,2,2,-1,0,0,2,2,1,1,2,2,0,1,2,1,2,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^2+8z+5 |
Enhanced Jones-Krushkal polynomial |
-8w^4z^2+11w^3z^2+8w^2z+5 |
Inner characteristic polynomial |
t^6+30t^4+13t^2 |
Outer characteristic polynomial |
t^7+46t^5+93t^3 |
Flat arrow polynomial |
-16*K1**4 + 8*K1**2*K2 + 8*K1**2 + 1 |
2-strand cable arrow polynomial |
-768*K2**8 + 512*K2**6*K4 - 3072*K2**6 - 64*K2**4*K4**2 + 2176*K2**4*K4 - 1664*K2**4 - 288*K2**2*K4**2 + 1984*K2**2*K4 + 1168*K2**2 + 16*K2*K4*K6 - 264*K4**2 + 262 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
False |