Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1251

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,0,1,1,2,1,1,2,2,0,1,2,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.1251']
Arrow polynomial of the knot is: -8*K1**4 + 8*K1**2*K2 + 4*K1**2 - 2*K1*K3 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.133', '6.517', '6.545', '6.1198', '6.1251', '6.1906']
Outer characteristic polynomial of the knot is: t^7+41t^5+91t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1251']
2-strand cable arrow polynomial of the knot is: 2144*K1**2*K2**3 - 3968*K1**2*K2**2 - 256*K1**2*K2*K4 + 3192*K1**2*K2 - 2560*K1**2 - 1152*K1*K2**4*K3 + 1696*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 1344*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 3600*K1*K2*K3 + 392*K1*K3*K4 + 24*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1088*K2**6 - 128*K2**5*K6 - 64*K2**4*K4**2 + 1824*K2**4*K4 - 3360*K2**4 + 64*K2**3*K4*K6 - 128*K2**3*K6 - 1376*K2**2*K3**2 - 544*K2**2*K4**2 + 2136*K2**2*K4 - 8*K2**2*K6**2 - 552*K2**2 + 568*K2*K3*K5 + 112*K2*K4*K6 - 1000*K3**2 - 442*K4**2 - 88*K5**2 - 8*K6**2 + 2056
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1251']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73191', 'vk6.73205', 'vk6.73629', 'vk6.74309', 'vk6.74403', 'vk6.74953', 'vk6.75012', 'vk6.75105', 'vk6.75122', 'vk6.75567', 'vk6.75591', 'vk6.76521', 'vk6.76585', 'vk6.76932', 'vk6.78047', 'vk6.78065', 'vk6.78535', 'vk6.78562', 'vk6.79357', 'vk6.79779', 'vk6.79848', 'vk6.79965', 'vk6.80815', 'vk6.80880', 'vk6.83694', 'vk6.84700', 'vk6.84811', 'vk6.85274', 'vk6.85635', 'vk6.87708', 'vk6.88378', 'vk6.89484']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U1U2O5O6U4U3U6
R3 orbit {'O1O2O3O4U5U1U2O5O6U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U1O5O6U3U4U6
Gauss code of K* O1O2O3U1U4O5O6O4U2U3U6U5
Gauss code of -K* O1O2O3U1U4O5O6O4U3U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 1 -2 2],[ 2 0 1 2 1 1 2],[ 0 -1 0 1 0 0 2],[-1 -2 -1 0 0 -1 2],[-1 -1 0 0 0 -1 1],[ 2 -1 0 1 1 0 2],[-2 -2 -2 -2 -1 -2 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 -1 -2 -2 -2 -2],[-1 1 0 0 0 -1 -1],[-1 2 0 0 -1 -1 -2],[ 0 2 0 1 0 0 -1],[ 2 2 1 1 0 0 -1],[ 2 2 1 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,1,2,2,2,2,0,0,1,1,1,1,2,0,1,1]
Phi over symmetry [-2,-2,0,1,1,2,-1,0,1,1,2,1,1,2,2,0,1,2,0,1,2]
Phi of -K [-2,-2,0,1,1,2,-1,1,1,2,2,2,2,2,2,0,1,0,0,-1,0]
Phi of K* [-2,-1,-1,0,2,2,-1,0,0,2,2,0,0,1,2,1,2,2,1,2,1]
Phi of -K* [-2,-2,0,1,1,2,-1,0,1,1,2,1,1,2,2,0,1,2,0,1,2]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w
Inner characteristic polynomial t^6+27t^4+12t^2
Outer characteristic polynomial t^7+41t^5+91t^3+7t
Flat arrow polynomial -8*K1**4 + 8*K1**2*K2 + 4*K1**2 - 2*K1*K3 - K2
2-strand cable arrow polynomial 2144*K1**2*K2**3 - 3968*K1**2*K2**2 - 256*K1**2*K2*K4 + 3192*K1**2*K2 - 2560*K1**2 - 1152*K1*K2**4*K3 + 1696*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 1344*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 3600*K1*K2*K3 + 392*K1*K3*K4 + 24*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1088*K2**6 - 128*K2**5*K6 - 64*K2**4*K4**2 + 1824*K2**4*K4 - 3360*K2**4 + 64*K2**3*K4*K6 - 128*K2**3*K6 - 1376*K2**2*K3**2 - 544*K2**2*K4**2 + 2136*K2**2*K4 - 8*K2**2*K6**2 - 552*K2**2 + 568*K2*K3*K5 + 112*K2*K4*K6 - 1000*K3**2 - 442*K4**2 - 88*K5**2 - 8*K6**2 + 2056
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact