Gauss code |
O1O2O3O4U5U1U3O5O6U2U4U6 |
R3 orbit |
{'O1O2O3O4U5U1U3O5O6U2U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U1U4O5O6O4U2U5U3U6 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U2U5U3U6 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 2 -2 2],[ 2 0 1 1 2 1 2],[ 1 -1 0 1 2 0 2],[-1 -1 -1 0 0 -1 1],[-2 -2 -2 0 0 -2 1],[ 2 -1 0 1 2 0 2],[-2 -2 -2 -1 -1 -2 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -2 -2],[-2 0 1 0 -2 -2 -2],[-2 -1 0 -1 -2 -2 -2],[-1 0 1 0 -1 -1 -1],[ 1 2 2 1 0 0 -1],[ 2 2 2 1 0 0 -1],[ 2 2 2 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,2,2,-1,0,2,2,2,1,2,2,2,1,1,1,0,1,1] |
Phi over symmetry |
[-2,-2,-1,1,2,2,-1,0,1,2,2,1,1,2,2,1,2,2,0,1,1] |
Phi of -K |
[-2,-2,-1,1,2,2,-1,0,2,2,2,1,2,2,2,1,1,1,0,1,1] |
Phi of K* |
[-2,-2,-1,1,2,2,-1,0,1,2,2,1,1,2,2,1,2,2,0,1,1] |
Phi of -K* |
[-2,-2,-1,1,2,2,-1,0,1,2,2,1,1,2,2,1,2,2,0,1,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+31t^4+7t^2 |
Outer characteristic polynomial |
t^7+49t^5+45t^3+4t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 8*K1*K2 - 4*K1*K3 - 2*K1 + 6*K2 + 2*K3 + 2*K4 + 5 |
2-strand cable arrow polynomial |
-832*K1**4 + 512*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 + 256*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 3264*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 320*K1**2*K2*K4 + 6304*K1**2*K2 - 960*K1**2*K3**2 - 128*K1**2*K3*K5 - 32*K1**2*K4**2 - 32*K1**2*K5**2 - 5592*K1**2 + 640*K1*K2**3*K3 - 1344*K1*K2**2*K3 - 320*K1*K2**2*K5 + 128*K1*K2*K3**3 - 320*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6864*K1*K2*K3 - 64*K1*K2*K5*K6 + 1408*K1*K3*K4 + 320*K1*K4*K5 + 128*K1*K5*K6 + 16*K1*K6*K7 - 64*K2**6 + 128*K2**4*K4 - 992*K2**4 + 64*K2**3*K3*K5 - 64*K2**3*K6 - 1216*K2**2*K3**2 - 64*K2**2*K3*K7 - 64*K2**2*K4**2 + 1568*K2**2*K4 - 64*K2**2*K5**2 - 48*K2**2*K6**2 - 4212*K2**2 + 1040*K2*K3*K5 + 208*K2*K4*K6 + 96*K2*K5*K7 + 32*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 2336*K3**2 - 732*K4**2 - 296*K5**2 - 100*K6**2 - 16*K7**2 - 4*K8**2 + 4342 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |