Gauss code |
O1O2O3O4U5U2U1O5O6U4U3U6 |
R3 orbit |
{'O1O2O3O4U5U2U1O5O6U4U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U1U4O5O6O4U3U2U6U5 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U3U2U6U5 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 1 -2 2],[ 1 0 0 2 1 0 2],[ 1 0 0 1 0 1 2],[-1 -2 -1 0 0 -1 2],[-1 -1 0 0 0 -1 1],[ 2 0 -1 1 1 0 2],[-2 -2 -2 -2 -1 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -2 -2 -2 -2],[-1 1 0 0 0 -1 -1],[-1 2 0 0 -1 -2 -1],[ 1 2 0 1 0 0 1],[ 1 2 1 2 0 0 0],[ 2 2 1 1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,2,2,2,2,0,0,1,1,1,2,1,0,-1,0] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,1,2,0,0,1,2,1,2,2,0,1,2] |
Phi of -K |
[-2,-1,-1,1,1,2,1,2,2,2,2,0,0,1,1,1,2,1,0,-1,0] |
Phi of K* |
[-2,-1,-1,1,1,2,-1,0,1,1,2,0,0,1,2,1,2,2,0,1,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,0,1,1,2,0,0,1,2,1,2,2,0,1,2] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+25z+19 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+10w^3z^2-4w^3z+29w^2z+19w |
Inner characteristic polynomial |
t^6+26t^4+39t^2+4 |
Outer characteristic polynomial |
t^7+38t^5+113t^3+16t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1*K3 + K4 |
2-strand cable arrow polynomial |
-1600*K1**2*K2**2 - 192*K1**2*K2*K4 + 2128*K1**2*K2 - 512*K1**2*K3**2 - 2656*K1**2 + 704*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 832*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 256*K1*K2*K3*K6 + 4976*K1*K2*K3 + 896*K1*K3*K4 + 16*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 2176*K2**2*K3**2 - 256*K2**2*K4**2 + 1184*K2**2*K4 - 48*K2**2*K6**2 - 2384*K2**2 + 1824*K2*K3*K5 + 224*K2*K4*K6 + 16*K2*K6*K8 + 48*K3**2*K6 - 2000*K3**2 - 440*K4**2 - 368*K5**2 - 48*K6**2 - 2*K8**2 + 2632 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |