Gauss code |
O1O2O3O4U5U3U2O5O6U4U1U6 |
R3 orbit |
{'O1O2O3O4U5U3U2O5O6U4U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4U1O5O6U3U2U6 |
Gauss code of K* |
O1O2O3U1U4O5O6O4U6U3U2U5 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U3U6U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 0 1 -2 2],[ 1 0 0 0 2 -1 2],[ 0 0 0 0 1 -1 1],[ 0 0 0 0 0 0 1],[-1 -2 -1 0 0 -1 1],[ 2 1 1 0 1 0 2],[-2 -2 -1 -1 -1 -2 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -2 -1],[ 0 1 0 0 0 0 0],[ 0 1 1 0 0 0 -1],[ 1 2 2 0 0 0 -1],[ 2 2 1 0 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,1,2,2,0,1,2,1,0,0,0,0,1,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,1,1,1,2,0,1,0,2,0,1,1,1,2,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,2,2,2,1,1,0,1,0,0,1,1,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,1,1,2,0,1,0,2,0,1,1,1,2,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,0,1,1,2,0,0,2,2,0,0,1,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2-4w^3z+28w^2z+21w |
Inner characteristic polynomial |
t^6+19t^4+23t^2+1 |
Outer characteristic polynomial |
t^7+29t^5+43t^3+9t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 2*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 - 2*K2**2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-192*K1**2*K2**4 + 864*K1**2*K2**3 - 4496*K1**2*K2**2 + 32*K1**2*K2*K3*K5 - 1120*K1**2*K2*K4 + 5024*K1**2*K2 - 64*K1**2*K3**2 - 64*K1**2*K5**2 - 4552*K1**2 + 448*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 672*K1*K2**2*K5 - 352*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6248*K1*K2*K3 - 96*K1*K2*K4*K5 + 1272*K1*K3*K4 + 472*K1*K4*K5 + 112*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1432*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 624*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 368*K2**2*K4**2 + 2704*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 3962*K2**2 - 32*K2*K3*K4*K5 + 1384*K2*K3*K5 - 32*K2*K4**2*K6 + 296*K2*K4*K6 + 32*K2*K5*K7 + 8*K2*K6*K8 + 32*K3**2*K6 - 2104*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1172*K4**2 - 568*K5**2 - 102*K6**2 - 8*K7**2 - 2*K8**2 + 3940 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |