Gauss code |
O1O2O3O4U5U4U3O5O6U2U1U6 |
R3 orbit |
{'O1O2O3O4U5U4U3O5O6U2U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U1U4O5O6O4U6U5U3U2 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U6U5U3U2 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 1 -2 2],[ 1 0 0 1 1 -1 2],[ 1 0 0 1 1 -1 1],[-1 -1 -1 0 0 -2 0],[-1 -1 -1 0 0 -1 0],[ 2 1 1 2 1 0 2],[-2 -2 -1 0 0 -2 0]] |
Primitive based matrix |
[[ 0 2 1 -1 -2],[-2 0 0 -1 -2],[-1 0 0 -1 -2],[ 1 1 1 0 -1],[ 2 2 2 1 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-2,-1,1,2,0,1,2,1,2,1] |
Phi over symmetry |
[-2,-1,1,2,0,1,2,1,2,1] |
Phi of -K |
[-2,-1,1,2,0,1,2,1,2,1] |
Phi of K* |
[-2,-1,1,2,1,2,2,1,1,0] |
Phi of -K* |
[-2,-1,1,2,1,2,2,1,1,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^4+11t^2 |
Outer characteristic polynomial |
t^5+21t^3+10t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1*K3 + K4 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 3072*K1**4*K2 - 3200*K1**4 + 512*K1**3*K2*K3 - 384*K1**3*K3 + 1920*K1**2*K2**3 - 5312*K1**2*K2**2 - 576*K1**2*K2*K4 + 3888*K1**2*K2 - 288*K1**2*K3**2 - 192*K1**2*K3*K5 - 384*K1**2*K4**2 - 128*K1**2*K4*K6 - 160*K1**2*K5**2 - 1504*K1**2 + 192*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 448*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 320*K1*K2*K3*K6 + 3616*K1*K2*K3 - 64*K1*K2*K4*K5 - 128*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 1152*K1*K3*K4 + 1152*K1*K4*K5 + 432*K1*K5*K6 + 48*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 64*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 192*K2**2*K3**2 - 352*K2**2*K4**2 + 1120*K2**2*K4 - 192*K2**2*K5**2 - 48*K2**2*K6**2 - 1424*K2**2 + 640*K2*K3*K5 + 416*K2*K4*K6 + 144*K2*K5*K7 + 16*K2*K6*K8 - 800*K3**2 - 784*K4**2 - 544*K5**2 - 192*K6**2 - 32*K7**2 - 2*K8**2 + 2128 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |