Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1261

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1261']
Arrow polynomial of the knot is: 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 + 2*K1 + 4*K2 + 2*K3 + K4 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1261']
Outer characteristic polynomial of the knot is: t^7+34t^5+33t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1261']
2-strand cable arrow polynomial of the knot is: -224*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 + 128*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 3104*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 4912*K1**2*K2 - 1088*K1**2*K3**2 - 192*K1**2*K3*K5 - 32*K1**2*K5**2 - 4888*K1**2 + 1280*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6704*K1*K2*K3 - 64*K1*K2*K5*K6 + 1440*K1*K3*K4 + 304*K1*K4*K5 + 112*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1328*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1376*K2**2*K3**2 - 272*K2**2*K4**2 + 1504*K2**2*K4 - 64*K2**2*K5**2 - 48*K2**2*K6**2 - 3212*K2**2 + 912*K2*K3*K5 + 240*K2*K4*K6 + 80*K2*K5*K7 + 16*K2*K6*K8 - 2312*K3**2 - 648*K4**2 - 280*K5**2 - 84*K6**2 - 24*K7**2 - 2*K8**2 + 3736
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1261']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71645', 'vk6.71664', 'vk6.71824', 'vk6.71832', 'vk6.72242', 'vk6.72263', 'vk6.72372', 'vk6.77261', 'vk6.77359', 'vk6.77382', 'vk6.77605', 'vk6.77622', 'vk6.77699', 'vk6.77721', 'vk6.81410', 'vk6.81442', 'vk6.86957', 'vk6.87162', 'vk6.88000', 'vk6.89550']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is r.
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U2U4O6O5U1U3U6
R3 orbit {'O1O2O3O4U5U2U4O6O5U1U3U6'}
R3 orbit length 1
Gauss code of -K Same
Gauss code of K* O1O2O3U4U1O5O6O4U5U2U6U3
Gauss code of -K* O1O2O3U4U1O5O6O4U5U2U6U3
Diagrammatic symmetry type r
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 2 -1 1],[ 2 0 0 2 2 0 1],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 -2 0],[-2 -2 -1 -1 0 -2 -1],[ 1 0 0 2 2 0 1],[-1 -1 0 0 1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 0],[ 1 2 1 2 0 0 0],[ 2 2 1 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,1,2,2,0,0,1,1,1,2,2,0,0,0]
Phi over symmetry [-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1]
Phi of -K [-2,-1,-1,1,1,2,1,1,1,2,2,0,0,1,1,1,2,2,0,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1]
Phi of -K* [-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1]
Symmetry type of based matrix r
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+22t^4+7t^2
Outer characteristic polynomial t^7+34t^5+33t^3+4t
Flat arrow polynomial 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 + 2*K1 + 4*K2 + 2*K3 + K4 + 4
2-strand cable arrow polynomial -224*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 + 128*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 3104*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 4912*K1**2*K2 - 1088*K1**2*K3**2 - 192*K1**2*K3*K5 - 32*K1**2*K5**2 - 4888*K1**2 + 1280*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6704*K1*K2*K3 - 64*K1*K2*K5*K6 + 1440*K1*K3*K4 + 304*K1*K4*K5 + 112*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1328*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1376*K2**2*K3**2 - 272*K2**2*K4**2 + 1504*K2**2*K4 - 64*K2**2*K5**2 - 48*K2**2*K6**2 - 3212*K2**2 + 912*K2*K3*K5 + 240*K2*K4*K6 + 80*K2*K5*K7 + 16*K2*K6*K8 - 2312*K3**2 - 648*K4**2 - 280*K5**2 - 84*K6**2 - 24*K7**2 - 2*K8**2 + 3736
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact