Gauss code |
O1O2O3O4U5U2U4O6O5U1U3U6 |
R3 orbit |
{'O1O2O3O4U5U2U4O6O5U1U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U4U1O5O6O4U5U2U6U3 |
Gauss code of -K* |
O1O2O3U4U1O5O6O4U5U2U6U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 2 -1 1],[ 2 0 0 2 2 0 1],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 -2 0],[-2 -2 -1 -1 0 -2 -1],[ 1 0 0 2 2 0 1],[-1 -1 0 0 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -2],[ 1 1 0 1 0 0 0],[ 1 2 1 2 0 0 0],[ 2 2 1 2 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,1,1,1,2,2,0,0,1,1,1,2,2,0,0,0] |
Phi over symmetry |
[-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1] |
Phi of -K |
[-2,-1,-1,1,1,2,1,1,1,2,2,0,0,1,1,1,2,2,0,0,0] |
Phi of K* |
[-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,0,1,2,2,0,0,1,1,1,2,2,0,1,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+22t^4+7t^2 |
Outer characteristic polynomial |
t^7+34t^5+33t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 + 2*K1 + 4*K2 + 2*K3 + K4 + 4 |
2-strand cable arrow polynomial |
-224*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 + 128*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 3104*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 4912*K1**2*K2 - 1088*K1**2*K3**2 - 192*K1**2*K3*K5 - 32*K1**2*K5**2 - 4888*K1**2 + 1280*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 6704*K1*K2*K3 - 64*K1*K2*K5*K6 + 1440*K1*K3*K4 + 304*K1*K4*K5 + 112*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1328*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1376*K2**2*K3**2 - 272*K2**2*K4**2 + 1504*K2**2*K4 - 64*K2**2*K5**2 - 48*K2**2*K6**2 - 3212*K2**2 + 912*K2*K3*K5 + 240*K2*K4*K6 + 80*K2*K5*K7 + 16*K2*K6*K8 - 2312*K3**2 - 648*K4**2 - 280*K5**2 - 84*K6**2 - 24*K7**2 - 2*K8**2 + 3736 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |