Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1264

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,0,0,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1264', '6.2076']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+14t^5+17t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1264', '6.2076']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 256*K1**4*K2**2 + 1344*K1**4*K2 - 2656*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 + 1216*K1**2*K2**3 - 5920*K1**2*K2**2 - 192*K1**2*K2*K4 + 6480*K1**2*K2 - 32*K1**2*K3**2 - 2344*K1**2 - 768*K1*K2**2*K3 + 3968*K1*K2*K3 + 144*K1*K3*K4 - 960*K2**4 + 800*K2**2*K4 - 1928*K2**2 - 664*K3**2 - 136*K4**2 + 2222
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1264']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11575', 'vk6.11914', 'vk6.12920', 'vk6.13228', 'vk6.20966', 'vk6.22383', 'vk6.28430', 'vk6.31368', 'vk6.31768', 'vk6.32530', 'vk6.32929', 'vk6.40141', 'vk6.42150', 'vk6.46651', 'vk6.52348', 'vk6.52610', 'vk6.53478', 'vk6.58949', 'vk6.64481', 'vk6.69781']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is r.
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U4U2O6O5U3U1U6
R3 orbit {'O1O2O3O4U5U4U2O6O5U3U1U6'}
R3 orbit length 1
Gauss code of -K Same
Gauss code of K* O1O2O3U4U1O5O6O4U6U3U5U2
Gauss code of -K* O1O2O3U4U1O5O6O4U6U3U5U2
Diagrammatic symmetry type r
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 1 -1 1],[ 1 0 0 1 1 -1 1],[ 0 0 0 0 0 -1 0],[ 0 -1 0 0 1 -1 0],[-1 -1 0 -1 0 -1 -1],[ 1 1 1 1 1 0 1],[-1 -1 0 0 1 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 0 -1 -1],[-1 -1 0 0 -1 -1 -1],[ 0 0 0 0 0 0 -1],[ 0 0 1 0 0 -1 -1],[ 1 1 1 0 1 0 -1],[ 1 1 1 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,0,0,1,1,1,1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,0,0,1,1,1,1]
Phi of -K [-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,0,0,1,1,1,1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,1,1,1,1,1,1,0,0,0,0,1,1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,1,1,1,1,1,1,1,0,0,0,0,1,1]
Symmetry type of based matrix r
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+10t^4+7t^2
Outer characteristic polynomial t^7+14t^5+17t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -256*K1**6 - 256*K1**4*K2**2 + 1344*K1**4*K2 - 2656*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 + 1216*K1**2*K2**3 - 5920*K1**2*K2**2 - 192*K1**2*K2*K4 + 6480*K1**2*K2 - 32*K1**2*K3**2 - 2344*K1**2 - 768*K1*K2**2*K3 + 3968*K1*K2*K3 + 144*K1*K3*K4 - 960*K2**4 + 800*K2**2*K4 - 1928*K2**2 - 664*K3**2 - 136*K4**2 + 2222
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]]
If K is slice False
Contact