Gauss code |
O1O2O3U1O4O5U2U3O6U4U6U5 |
R3 orbit |
{'O1O2O3U1O4O5U2U3O6U4U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5U6O5U1U2O4O6U3 |
Gauss code of K* |
O1O2O3U4U5U6O4U1U3O5O6U2 |
Gauss code of -K* |
O1O2O3U2O4O5U1U3O6U4U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 0 0 3 1],[ 2 0 1 2 2 2 0],[ 2 -1 0 1 2 3 1],[ 0 -2 -1 0 1 2 1],[ 0 -2 -2 -1 0 2 1],[-3 -2 -3 -2 -2 0 0],[-1 0 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -2 -2],[-3 0 0 -2 -2 -2 -3],[-1 0 0 -1 -1 0 -1],[ 0 2 1 0 1 -2 -1],[ 0 2 1 -1 0 -2 -2],[ 2 2 0 2 2 0 1],[ 2 3 1 1 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,2,2,0,2,2,2,3,1,1,0,1,-1,2,1,2,2,-1] |
Phi over symmetry |
[-3,-1,0,0,2,2,0,2,2,2,3,1,1,0,1,-1,2,1,2,2,-1] |
Phi of -K |
[-2,-2,0,0,1,3,-1,0,0,3,3,0,1,2,2,1,0,1,0,1,2] |
Phi of K* |
[-3,-1,0,0,2,2,2,1,1,2,3,0,0,2,3,-1,0,0,1,0,-1] |
Phi of -K* |
[-2,-2,0,0,1,3,-1,1,2,1,3,2,2,0,2,1,1,2,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
7z^2+26z+25 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2-2w^3z+28w^2z+25w |
Inner characteristic polynomial |
t^6+39t^4+26t^2 |
Outer characteristic polynomial |
t^7+57t^5+70t^3+9t |
Flat arrow polynomial |
12*K1**3 - 4*K1**2 - 10*K1*K2 - 4*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 704*K1**4*K2 - 896*K1**4 + 192*K1**3*K2*K3 - 160*K1**3*K3 - 1984*K1**2*K2**4 + 4128*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 32*K1**2*K2**2*K4 - 11328*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 8424*K1**2*K2 - 256*K1**2*K3**2 - 4900*K1**2 - 256*K1*K2**4*K3 + 3296*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2368*K1*K2**2*K3 - 512*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 9008*K1*K2*K3 + 664*K1*K3*K4 + 40*K1*K4*K5 - 352*K2**6 + 608*K2**4*K4 - 3808*K2**4 - 64*K2**3*K6 - 1712*K2**2*K3**2 - 264*K2**2*K4**2 + 2720*K2**2*K4 - 2204*K2**2 + 696*K2*K3*K5 + 48*K2*K4*K6 - 1900*K3**2 - 504*K4**2 - 48*K5**2 - 4*K6**2 + 3822 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice |
False |