Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1275

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,2,3,-1,-1,1,2,-1,0,0,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1275']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+35t^5+65t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1275']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 256*K1**4*K2 - 880*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 416*K1**2*K2**3 - 2400*K1**2*K2**2 - 96*K1**2*K2*K4 + 5192*K1**2*K2 - 304*K1**2*K3**2 - 4404*K1**2 + 96*K1*K2**3*K3 - 960*K1*K2**2*K3 - 64*K1*K2**2*K5 + 3800*K1*K2*K3 + 992*K1*K3*K4 - 32*K2**6 + 96*K2**4*K4 - 624*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 112*K2**2*K4**2 + 1096*K2**2*K4 - 3222*K2**2 - 96*K2*K3**2*K4 + 248*K2*K3*K5 + 112*K2*K4*K6 + 24*K3**2*K6 - 1520*K3**2 - 620*K4**2 - 60*K5**2 - 18*K6**2 + 3354
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1275']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11283', 'vk6.11363', 'vk6.12544', 'vk6.12657', 'vk6.18361', 'vk6.18700', 'vk6.24805', 'vk6.25264', 'vk6.30965', 'vk6.31092', 'vk6.32143', 'vk6.32264', 'vk6.36987', 'vk6.37440', 'vk6.44168', 'vk6.44488', 'vk6.52035', 'vk6.52124', 'vk6.52878', 'vk6.52945', 'vk6.56144', 'vk6.56372', 'vk6.60666', 'vk6.61013', 'vk6.63656', 'vk6.63703', 'vk6.64084', 'vk6.64131', 'vk6.65801', 'vk6.66056', 'vk6.68798', 'vk6.69007']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U3U5O6U4U2U6
R3 orbit {'O1O2O3U1O4O5U3U5O6U4U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U5O4U6U1O6O5U3
Gauss code of K* O1O2O3U4U2U5O4U1U6O5O6U3
Gauss code of -K* O1O2O3U1O4O5U4U3O6U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 0 1 2],[ 2 0 2 1 1 1 1],[ 0 -2 0 -2 1 1 2],[ 1 -1 2 0 2 1 1],[ 0 -1 -1 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-2 -1 -2 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -1 -1],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 -1 -2 -1],[ 0 2 1 1 0 -2 -2],[ 1 1 1 2 2 0 -1],[ 2 1 1 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,2,1,1,0,1,1,1,1,2,1,2,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,2,3,-1,-1,1,2,-1,0,0,1,1,1]
Phi of -K [-2,-1,0,0,1,2,0,0,1,2,3,-1,-1,1,2,-1,0,0,1,1,1]
Phi of K* [-2,-1,0,0,1,2,1,0,1,2,3,0,1,1,2,1,-1,0,-1,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,1,1,2,2,1,1,-1,0,1,1,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+25t^4+19t^2
Outer characteristic polynomial t^7+35t^5+65t^3+5t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -128*K1**4*K2**2 + 256*K1**4*K2 - 880*K1**4 + 352*K1**3*K2*K3 - 224*K1**3*K3 + 416*K1**2*K2**3 - 2400*K1**2*K2**2 - 96*K1**2*K2*K4 + 5192*K1**2*K2 - 304*K1**2*K3**2 - 4404*K1**2 + 96*K1*K2**3*K3 - 960*K1*K2**2*K3 - 64*K1*K2**2*K5 + 3800*K1*K2*K3 + 992*K1*K3*K4 - 32*K2**6 + 96*K2**4*K4 - 624*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 112*K2**2*K4**2 + 1096*K2**2*K4 - 3222*K2**2 - 96*K2*K3**2*K4 + 248*K2*K3*K5 + 112*K2*K4*K6 + 24*K3**2*K6 - 1520*K3**2 - 620*K4**2 - 60*K5**2 - 18*K6**2 + 3354
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice False
Contact