Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,1,1,2,1,-1,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1278'] |
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845'] |
Outer characteristic polynomial of the knot is: t^7+26t^5+49t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1278'] |
2-strand cable arrow polynomial of the knot is: 2784*K1**4*K2 - 5856*K1**4 + 960*K1**3*K2*K3 - 1408*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7776*K1**2*K2**2 - 576*K1**2*K2*K4 + 10672*K1**2*K2 - 1152*K1**2*K3**2 - 32*K1**2*K4**2 - 4268*K1**2 + 416*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 288*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 7792*K1*K2*K3 + 1344*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 888*K2**4 - 32*K2**3*K6 - 176*K2**2*K3**2 - 16*K2**2*K4**2 + 1328*K2**2*K4 - 4286*K2**2 + 240*K2*K3*K5 + 16*K2*K4*K6 - 1976*K3**2 - 530*K4**2 - 68*K5**2 - 2*K6**2 + 4376 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1278'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4374', 'vk6.4405', 'vk6.5692', 'vk6.5723', 'vk6.7757', 'vk6.7788', 'vk6.9235', 'vk6.9266', 'vk6.10472', 'vk6.10546', 'vk6.10643', 'vk6.10695', 'vk6.10726', 'vk6.10828', 'vk6.14610', 'vk6.15322', 'vk6.15449', 'vk6.16229', 'vk6.17987', 'vk6.24425', 'vk6.30159', 'vk6.30233', 'vk6.30330', 'vk6.30455', 'vk6.33964', 'vk6.34369', 'vk6.34425', 'vk6.43852', 'vk6.50443', 'vk6.50474', 'vk6.54198', 'vk6.63433'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4O5U4U3O6U5U6U2 |
R3 orbit | {'O1O2O3U1O4O5U4U3O6U5U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4U5O4U1U6O5O6U3 |
Gauss code of K* | O1O2O3U4U3U5O4U6U1O6O5U2 |
Gauss code of -K* | O1O2O3U2O4O5U3U5O6U4U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 -1 1 1],[ 2 0 2 1 0 1 0],[-1 -2 0 -1 -1 1 1],[ 0 -1 1 0 0 2 1],[ 1 0 1 0 0 1 1],[-1 -1 -1 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 -1 -2],[-1 -1 0 1 -2 -1 -1],[-1 -1 -1 0 -1 -1 0],[ 0 1 2 1 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 2 1 0 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,2,1,1,1,1,0,0,1,0] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,1,1,2,1,-1,-1,-1] |
Phi of -K | [-2,-1,0,1,1,1,1,1,1,2,3,1,1,1,1,0,-1,0,-1,-1,-1] |
Phi of K* | [-1,-1,-1,0,1,2,-1,-1,0,1,3,-1,-1,1,2,0,1,1,1,1,1] |
Phi of -K* | [-2,-1,0,1,1,1,0,1,0,1,2,0,1,1,1,1,2,1,-1,-1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+27w^2z+31w |
Inner characteristic polynomial | t^6+18t^4+18t^2+1 |
Outer characteristic polynomial | t^7+26t^5+49t^3+8t |
Flat arrow polynomial | 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial | 2784*K1**4*K2 - 5856*K1**4 + 960*K1**3*K2*K3 - 1408*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7776*K1**2*K2**2 - 576*K1**2*K2*K4 + 10672*K1**2*K2 - 1152*K1**2*K3**2 - 32*K1**2*K4**2 - 4268*K1**2 + 416*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 288*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 7792*K1*K2*K3 + 1344*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 888*K2**4 - 32*K2**3*K6 - 176*K2**2*K3**2 - 16*K2**2*K4**2 + 1328*K2**2*K4 - 4286*K2**2 + 240*K2*K3*K5 + 16*K2*K4*K6 - 1976*K3**2 - 530*K4**2 - 68*K5**2 - 2*K6**2 + 4376 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |