| Gauss code |
O1O2O3U1O4O5U4U5O6U2U3U6 |
| R3 orbit |
{'O1O2O3U1O4O5U4U5O6U2U3U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U1U2O4U5U6O5O6U3 |
| Gauss code of K* |
O1O2O3U4U1U2O4U5U6O5O6U3 |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
- |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -1 1 -1 1 2],[ 2 0 1 2 0 0 2],[ 1 -1 0 1 -1 1 2],[-1 -2 -1 0 -1 1 1],[ 1 0 1 1 0 1 0],[-1 0 -1 -1 -1 0 0],[-2 -2 -2 -1 0 0 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 0 -2 -2],[-1 0 0 -1 -1 -1 0],[-1 1 1 0 -1 -1 -2],[ 1 0 1 1 0 1 0],[ 1 2 1 1 -1 0 -1],[ 2 2 0 2 0 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,1,0,2,2,1,1,1,0,1,1,2,-1,0,1] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,0,1,0,2,2,1,1,1,0,1,1,2,-1,0,1] |
| Phi of -K |
[-2,-1,-1,1,1,2,0,1,1,3,2,1,1,1,1,1,1,3,-1,0,1] |
| Phi of K* |
[-2,-1,-1,1,1,2,0,1,1,3,2,1,1,1,1,1,1,3,-1,0,1] |
| Phi of -K* |
[-2,-1,-1,1,1,2,0,1,0,2,2,1,1,1,0,1,1,2,-1,0,1] |
| Symmetry type of based matrix |
- |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
| Enhanced Jones-Krushkal polynomial |
7w^3z^2+24w^2z+21w |
| Inner characteristic polynomial |
t^6+20t^4+36t^2+1 |
| Outer characteristic polynomial |
t^7+32t^5+62t^3+5t |
| Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
| 2-strand cable arrow polynomial |
-2048*K1**4*K2**2 + 3904*K1**4*K2 - 3840*K1**4 + 960*K1**3*K2*K3 - 256*K1**3*K3 - 2688*K1**2*K2**4 + 6400*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 13280*K1**2*K2**2 - 704*K1**2*K2*K4 + 6640*K1**2*K2 - 208*K1**2 + 2176*K1*K2**3*K3 - 2304*K1*K2**2*K3 - 320*K1*K2**2*K5 + 5968*K1*K2*K3 + 80*K1*K3*K4 - 704*K2**6 + 384*K2**4*K4 - 3760*K2**4 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 2304*K2**2*K4 + 624*K2**2 + 32*K2*K3*K5 - 416*K3**2 - 100*K4**2 + 1266 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}]] |
| If K is slice |
True |