| Gauss code |
O1O2O3U1O4O5U4U5O6U3U2U6 |
| R3 orbit |
{'O1O2O3U1O4O5U4U5O6U3U2U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U2U1O4U5U6O5O6U3 |
| Gauss code of K* |
O1O2O3U4U2U1O4U5U6O5O6U3 |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
- |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 0 0 -1 1 2],[ 2 0 2 1 0 0 2],[ 0 -2 0 0 -1 1 2],[ 0 -1 0 0 -1 1 1],[ 1 0 1 1 0 1 0],[-1 0 -1 -1 -1 0 0],[-2 -2 -2 -1 0 0 0]] |
| Primitive based matrix |
[[ 0 2 1 0 -1 -2],[-2 0 0 -1 0 -2],[-1 0 0 -1 -1 0],[ 0 1 1 0 -1 -1],[ 1 0 1 1 0 0],[ 2 2 0 1 0 0]] |
| If based matrix primitive |
False |
| Phi of primitive based matrix |
[-2,-1,0,1,2,0,1,0,2,1,1,0,1,1,0] |
| Phi over symmetry |
[-2,-1,0,1,2,0,1,0,2,1,1,0,1,1,0] |
| Phi of -K |
[-2,-1,0,1,2,1,1,3,2,0,1,3,0,1,1] |
| Phi of K* |
[-2,-1,0,1,2,1,1,3,2,0,1,3,0,1,1] |
| Phi of -K* |
[-2,-1,0,1,2,0,1,0,2,1,1,0,1,1,0] |
| Symmetry type of based matrix |
- |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
-z-1 |
| Enhanced Jones-Krushkal polynomial |
-16w^3z+15w^2z-w |
| Inner characteristic polynomial |
t^5+9t^3+14t |
| Outer characteristic polynomial |
t^6+19t^4+34t^2 |
| Flat arrow polynomial |
8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
| 2-strand cable arrow polynomial |
-896*K1**2*K2**4 + 640*K1**2*K2**3 - 3744*K1**2*K2**2 + 2208*K1**2*K2 - 608*K1**2 + 512*K1*K2**3*K3 + 2080*K1*K2*K3 - 704*K2**6 + 384*K2**4*K4 - 2176*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 1344*K2**2*K4 + 784*K2**2 - 160*K3**2 - 80*K4**2 + 462 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}]] |
| If K is slice |
True |