Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1281

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,1,1,0,1,1,1,1,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1281', '7.37186']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+22t^5+28t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1281', '7.37186']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 320*K1**4*K2**2 + 1344*K1**4*K2 - 2544*K1**4 + 512*K1**3*K2*K3 - 384*K1**3*K3 - 192*K1**2*K2**4 + 1024*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 3856*K1**2*K2**2 - 448*K1**2*K2*K4 + 3808*K1**2*K2 - 304*K1**2*K3**2 - 48*K1**2*K4**2 - 524*K1**2 + 320*K1*K2**3*K3 - 512*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 2528*K1*K2*K3 + 272*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 680*K2**4 - 32*K2**3*K6 - 192*K2**2*K3**2 - 16*K2**2*K4**2 + 504*K2**2*K4 - 774*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 340*K3**2 - 78*K4**2 - 16*K5**2 - 2*K6**2 + 1028
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1281']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.62', 'vk6.119', 'vk6.212', 'vk6.261', 'vk6.295', 'vk6.677', 'vk6.704', 'vk6.751', 'vk6.1214', 'vk6.1263', 'vk6.1350', 'vk6.1399', 'vk6.1496', 'vk6.1580', 'vk6.1921', 'vk6.2053', 'vk6.2448', 'vk6.2477', 'vk6.2654', 'vk6.2990', 'vk6.5756', 'vk6.5787', 'vk6.7821', 'vk6.7852', 'vk6.10257', 'vk6.10402', 'vk6.13295', 'vk6.13328', 'vk6.14779', 'vk6.14802', 'vk6.15933', 'vk6.15958', 'vk6.18051', 'vk6.24489', 'vk6.25845', 'vk6.33052', 'vk6.37391', 'vk6.37956', 'vk6.38021', 'vk6.44863']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U4U5O6U3U6U2
R3 orbit {'O1O2O3U1O4O5U4U5U2O6U3U6', 'O1O2O3U1O4O5U4U5O6U3U6U2'}
R3 orbit length 2
Gauss code of -K O1O2O3U2U4U1O4U5U6O5O6U3
Gauss code of K* O1O2O3U4U3U1O4U5U6O5O6U2
Gauss code of -K* O1O2O3U2O4O5U4U5O6U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 -1 1 1],[ 2 0 2 1 0 0 1],[-1 -2 0 -1 -1 1 1],[ 0 -1 1 0 -1 1 1],[ 1 0 1 1 0 1 0],[-1 0 -1 -1 -1 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 -1 -2],[-1 -1 0 0 -1 0 -1],[-1 -1 0 0 -1 -1 0],[ 0 1 1 1 0 -1 -1],[ 1 1 0 1 1 0 0],[ 2 2 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,1,0,1,1,1,0,1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,1,1,0,1,1,1,1,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,1,1,1,2,3,0,1,2,1,0,0,0,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,3,1,0,1,1,0,2,2,0,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,0,1,2,1,1,0,1,1,1,1,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+14t^4+15t^2
Outer characteristic polynomial t^7+22t^5+28t^3+3t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -256*K1**6 - 320*K1**4*K2**2 + 1344*K1**4*K2 - 2544*K1**4 + 512*K1**3*K2*K3 - 384*K1**3*K3 - 192*K1**2*K2**4 + 1024*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 3856*K1**2*K2**2 - 448*K1**2*K2*K4 + 3808*K1**2*K2 - 304*K1**2*K3**2 - 48*K1**2*K4**2 - 524*K1**2 + 320*K1*K2**3*K3 - 512*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 2528*K1*K2*K3 + 272*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 680*K2**4 - 32*K2**3*K6 - 192*K2**2*K3**2 - 16*K2**2*K4**2 + 504*K2**2*K4 - 774*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 340*K3**2 - 78*K4**2 - 16*K5**2 - 2*K6**2 + 1028
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact