Gauss code |
O1O2O3U1O4O5U6U3O6U4U5U2 |
R3 orbit |
{'O1O2O3U1O4O5U6U3O6U4U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U4U5O6U1U6O4O5U3 |
Gauss code of K* |
O1O2O3U4U3U5O4U1U2O6O5U6 |
Gauss code of -K* |
O1O2O3U4O5O4U2U3O6U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 0 0 2 -1],[ 2 0 2 1 1 1 1],[-1 -2 0 -1 0 2 -2],[ 0 -1 1 0 0 1 0],[ 0 -1 0 0 0 1 0],[-2 -1 -2 -1 -1 0 -2],[ 1 -1 2 0 0 2 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -1 -2 -1],[-1 2 0 0 -1 -2 -2],[ 0 1 0 0 0 0 -1],[ 0 1 1 0 0 0 -1],[ 1 2 2 0 0 0 -1],[ 2 1 2 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,2,1,1,2,1,0,1,2,2,0,0,1,0,1,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,1,1,1,3,0,1,0,1,0,1,1,1,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,1,1,3,1,1,0,1,0,0,1,1,1,-1] |
Phi of K* |
[-2,-1,0,0,1,2,-1,1,1,1,3,0,1,0,1,0,1,1,1,1,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,1,1,2,1,0,0,2,2,0,0,1,1,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+23t^4+14t^2+1 |
Outer characteristic polynomial |
t^7+33t^5+26t^3+4t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-256*K1**6 - 1472*K1**4*K2**2 + 3648*K1**4*K2 - 6080*K1**4 + 1536*K1**3*K2*K3 - 1344*K1**3*K3 - 448*K1**2*K2**4 + 2880*K1**2*K2**3 + 448*K1**2*K2**2*K4 - 10688*K1**2*K2**2 - 1216*K1**2*K2*K4 + 11552*K1**2*K2 - 992*K1**2*K3**2 - 112*K1**2*K4**2 - 3972*K1**2 + 1024*K1*K2**3*K3 - 1600*K1*K2**2*K3 - 384*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 8416*K1*K2*K3 + 1280*K1*K3*K4 + 192*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1872*K2**4 - 64*K2**3*K6 - 656*K2**2*K3**2 - 128*K2**2*K4**2 + 1728*K2**2*K4 - 3564*K2**2 + 560*K2*K3*K5 + 80*K2*K4*K6 - 1736*K3**2 - 560*K4**2 - 132*K5**2 - 12*K6**2 + 4262 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{6}, {3, 5}, {2, 4}, {1}]] |
If K is slice |
False |