Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,2,1,3,0,1,0,1,1,0,1,1,2,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1288'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+39t^5+57t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1288'] |
2-strand cable arrow polynomial of the knot is: -512*K1**6 + 1696*K1**4*K2 - 6160*K1**4 + 480*K1**3*K2*K3 - 608*K1**3*K3 - 3664*K1**2*K2**2 - 224*K1**2*K2*K4 + 9672*K1**2*K2 - 496*K1**2*K3**2 - 3572*K1**2 - 192*K1*K2**2*K3 + 4456*K1*K2*K3 + 472*K1*K3*K4 - 96*K2**4 + 240*K2**2*K4 - 3944*K2**2 - 1348*K3**2 - 164*K4**2 + 3962 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1288'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4787', 'vk6.4797', 'vk6.5124', 'vk6.5134', 'vk6.6352', 'vk6.6786', 'vk6.6792', 'vk6.8306', 'vk6.8316', 'vk6.8756', 'vk6.9680', 'vk6.9686', 'vk6.9991', 'vk6.9997', 'vk6.21002', 'vk6.21014', 'vk6.22424', 'vk6.22436', 'vk6.28458', 'vk6.40230', 'vk6.40234', 'vk6.42159', 'vk6.46732', 'vk6.46736', 'vk6.48816', 'vk6.49038', 'vk6.49044', 'vk6.49854', 'vk6.49864', 'vk6.51510', 'vk6.58960', 'vk6.69796'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4O5U6U4O6U3U5U2 |
R3 orbit | {'O1O2O3U1O4O5U6U4O6U3U5U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4U1O5U6U5O4O6U3 |
Gauss code of K* | O1O2O3U4U3U1O4U5U2O6O5U6 |
Gauss code of -K* | O1O2O3U4O5O4U2U5O6U3U1U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 0 2 -1],[ 2 0 2 1 0 1 2],[-1 -2 0 -1 0 2 -2],[ 0 -1 1 0 1 2 -1],[ 0 0 0 -1 0 0 0],[-2 -1 -2 -2 0 0 -2],[ 1 -2 2 1 0 2 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -2 0 -2 -2 -1],[-1 2 0 0 -1 -2 -2],[ 0 0 0 0 -1 0 0],[ 0 2 1 1 0 -1 -1],[ 1 2 2 0 1 0 -2],[ 2 1 2 0 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,2,0,2,2,1,0,1,2,2,1,0,0,1,1,2] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,0,2,1,3,0,1,0,1,1,0,1,1,2,-1] |
Phi of -K | [-2,-1,0,0,1,2,-1,1,2,1,3,0,1,0,1,-1,0,0,1,2,-1] |
Phi of K* | [-2,-1,0,0,1,2,-1,0,2,1,3,0,1,0,1,1,0,1,1,2,-1] |
Phi of -K* | [-2,-1,0,0,1,2,2,0,1,2,1,0,1,2,2,-1,0,0,1,2,2] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+29t^4+39t^2+4 |
Outer characteristic polynomial | t^7+39t^5+57t^3+6t |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -512*K1**6 + 1696*K1**4*K2 - 6160*K1**4 + 480*K1**3*K2*K3 - 608*K1**3*K3 - 3664*K1**2*K2**2 - 224*K1**2*K2*K4 + 9672*K1**2*K2 - 496*K1**2*K3**2 - 3572*K1**2 - 192*K1*K2**2*K3 + 4456*K1*K2*K3 + 472*K1*K3*K4 - 96*K2**4 + 240*K2**2*K4 - 3944*K2**2 - 1348*K3**2 - 164*K4**2 + 3962 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |