Min(phi) over symmetries of the knot is: [0] |
Flat knots (up to 7 crossings) with same phi are :['6.129', '6.899', '6.1258', '7.13893', '7.14277', '7.20990', '7.25000', '7.25725', '7.28256', '7.28266', '7.31466', '7.36145', '7.36268', '7.44910', '7.45069', '7.45098', '7.45148', '7.45357', '7.45690', '7.45856', '7.46147', '7.46161'] |
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 - 4*K2**2 + 4*K2 + 2*K3 + 2*K4 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.129'] |
Outer characteristic polynomial of the knot is: t^2 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.129', '6.899', '6.1258', '7.13893', '7.14277', '7.20990', '7.25000', '7.25725', '7.28256', '7.28266', '7.31466', '7.36145', '7.36268', '7.44910', '7.45069', '7.45098', '7.45148', '7.45357', '7.45690', '7.45856', '7.46147', '7.46161'] |
2-strand cable arrow polynomial of the knot is: -256*K1**4 + 128*K1**2*K2**3 - 1216*K1**2*K2**2 + 2720*K1**2*K2 - 192*K1**2*K3**2 - 640*K1**2*K4**2 - 3296*K1**2 + 1824*K1*K2*K3 + 256*K1*K3*K4**3 + 1664*K1*K3*K4 + 480*K1*K4*K5 + 160*K1*K5*K6 - 160*K2**4 - 48*K2**2*K4**2 + 240*K2**2*K4 - 1828*K2**2 + 288*K2*K3*K5 + 48*K2*K4*K6 - 64*K3**4 - 384*K3**2*K4**2 + 96*K3**2*K6 - 1360*K3**2 + 128*K3*K4*K7 - 176*K4**4 + 32*K4**2*K8 - 656*K4**2 - 336*K5**2 - 124*K6**2 - 4*K8**2 + 2674 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.129'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72423', 'vk6.72472', 'vk6.72833', 'vk6.72894', 'vk6.74480', 'vk6.75082', 'vk6.76973', 'vk6.77775', 'vk6.77965', 'vk6.79471', 'vk6.79928', 'vk6.80943', 'vk6.87238', 'vk6.89364'] |
The R3 orbit of minmal crossing diagrams contains:
|
The diagrammatic symmetry type of this knot is a.
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click
here
to check the fillings
|