Gauss code |
O1O2O3U2O4O5U4U5O6U1U6U3 |
R3 orbit |
{'O1O2O3U2O4O5U4U5O6U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U3O4U5U6O5O6U2 |
Gauss code of K* |
O1O2O3U1U4U3O4U5U6O5O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 2 -1 1 1],[ 2 0 0 3 -1 1 1],[ 1 0 0 1 0 0 0],[-2 -3 -1 0 -1 1 0],[ 1 1 0 1 0 1 0],[-1 -1 0 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 1 0 -1 -1 -3],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 0 0 -1],[ 1 1 0 0 0 0 0],[ 1 1 1 0 0 0 1],[ 2 3 1 1 0 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,-1,0,1,1,3,0,0,1,1,0,0,1,0,0,-1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,1,3,0,0,1,1,0,0,1,0,0,-1] |
Phi of -K |
[-2,-1,-1,1,1,2,1,2,2,2,1,0,2,2,2,1,2,2,0,2,1] |
Phi of K* |
[-2,-1,-1,1,1,2,1,2,2,2,1,0,2,2,2,1,2,2,0,2,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,0,1,1,3,0,0,1,1,0,0,1,0,0,-1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+24z+33 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+24w^2z+33w |
Inner characteristic polynomial |
t^6+16t^4+16t^2+1 |
Outer characteristic polynomial |
t^7+28t^5+36t^3+7t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-512*K1**6 - 640*K1**4*K2**2 + 3200*K1**4*K2 - 7456*K1**4 + 1792*K1**3*K2*K3 + 256*K1**3*K3*K4 - 2240*K1**3*K3 - 384*K1**2*K2**4 + 2432*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9888*K1**2*K2**2 - 1728*K1**2*K2*K4 + 11408*K1**2*K2 - 1824*K1**2*K3**2 - 64*K1**2*K3*K5 - 288*K1**2*K4**2 - 1992*K1**2 + 1280*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 - 256*K1*K2**2*K5 - 576*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 8064*K1*K2*K3 - 64*K1*K2*K4*K5 + 1344*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 1952*K2**4 - 832*K2**2*K3**2 - 224*K2**2*K4**2 + 1520*K2**2*K4 - 2292*K2**2 + 448*K2*K3*K5 + 96*K2*K4*K6 - 1240*K3**2 - 312*K4**2 - 16*K5**2 - 4*K6**2 + 3102 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
True |