Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,2,2,1,1,2,3,1,0,2,0,-1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1298'] |
Arrow polynomial of the knot is: 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.140', '6.569', '6.943', '6.970', '6.1234', '6.1298', '6.1311', '6.1326', '6.1500', '6.1506', '6.1708', '6.1712', '6.1720', '6.1859'] |
Outer characteristic polynomial of the knot is: t^7+45t^5+117t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1298'] |
2-strand cable arrow polynomial of the knot is: 1504*K1**4*K2 - 3552*K1**4 + 928*K1**3*K2*K3 - 576*K1**3*K3 - 128*K1**2*K2**4 + 1120*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6800*K1**2*K2**2 - 960*K1**2*K2*K4 + 7832*K1**2*K2 - 672*K1**2*K3**2 - 32*K1**2*K4**2 - 3544*K1**2 + 576*K1*K2**3*K3 - 1728*K1*K2**2*K3 - 352*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7256*K1*K2*K3 + 1080*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1352*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 16*K2**2*K4**2 + 1888*K2**2*K4 - 3622*K2**2 + 496*K2*K3*K5 + 16*K2*K4*K6 - 1828*K3**2 - 558*K4**2 - 76*K5**2 - 2*K6**2 + 3644 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1298'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16803', 'vk6.16810', 'vk6.16858', 'vk6.16867', 'vk6.18172', 'vk6.18184', 'vk6.18507', 'vk6.18519', 'vk6.23239', 'vk6.23246', 'vk6.24628', 'vk6.25048', 'vk6.25068', 'vk6.35235', 'vk6.35260', 'vk6.36768', 'vk6.37200', 'vk6.37222', 'vk6.42750', 'vk6.42761', 'vk6.44348', 'vk6.44360', 'vk6.54996', 'vk6.55029', 'vk6.55977', 'vk6.55981', 'vk6.59394', 'vk6.59408', 'vk6.60512', 'vk6.65645', 'vk6.68184', 'vk6.68191'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4O5U6U3O6U1U5U4 |
R3 orbit | {'O1O2O3U2O4O5U6U3O6U1U5U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5U3O6U1U6O5O4U2 |
Gauss code of K* | O1O2O3U1U4U5O4U3U2O6O5U6 |
Gauss code of -K* | O1O2O3U4O5O4U2U1O6U5U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 0 2 2 -1],[ 2 0 -1 2 3 2 1],[ 1 1 0 1 1 1 0],[ 0 -2 -1 0 1 0 0],[-2 -3 -1 -1 0 0 -2],[-2 -2 -1 0 0 0 -2],[ 1 -1 0 0 2 2 0]] |
Primitive based matrix | [[ 0 2 2 0 -1 -1 -2],[-2 0 0 0 -1 -2 -2],[-2 0 0 -1 -1 -2 -3],[ 0 0 1 0 -1 0 -2],[ 1 1 1 1 0 0 1],[ 1 2 2 0 0 0 -1],[ 2 2 3 2 -1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,1,1,2,0,0,1,2,2,1,1,2,3,1,0,2,0,-1,1] |
Phi over symmetry | [-2,-2,0,1,1,2,0,0,1,2,2,1,1,2,3,1,0,2,0,-1,1] |
Phi of -K | [-2,-1,-1,0,2,2,0,2,0,1,2,0,1,1,1,0,2,2,1,2,0] |
Phi of K* | [-2,-2,0,1,1,2,0,1,1,2,1,2,1,2,2,1,0,0,0,0,2] |
Phi of -K* | [-2,-1,-1,0,2,2,-1,1,2,2,3,0,1,1,1,0,2,2,0,1,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial | 9w^3z^2+30w^2z+25w |
Inner characteristic polynomial | t^6+31t^4+66t^2+1 |
Outer characteristic polynomial | t^7+45t^5+117t^3+8t |
Flat arrow polynomial | 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3 |
2-strand cable arrow polynomial | 1504*K1**4*K2 - 3552*K1**4 + 928*K1**3*K2*K3 - 576*K1**3*K3 - 128*K1**2*K2**4 + 1120*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6800*K1**2*K2**2 - 960*K1**2*K2*K4 + 7832*K1**2*K2 - 672*K1**2*K3**2 - 32*K1**2*K4**2 - 3544*K1**2 + 576*K1*K2**3*K3 - 1728*K1*K2**2*K3 - 352*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7256*K1*K2*K3 + 1080*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1352*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 16*K2**2*K4**2 + 1888*K2**2*K4 - 3622*K2**2 + 496*K2*K3*K5 + 16*K2*K4*K6 - 1828*K3**2 - 558*K4**2 - 76*K5**2 - 2*K6**2 + 3644 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |