Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,0,1,3,3,0,0,2,2,0,0,1,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1301'] |
Arrow polynomial of the knot is: -14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.665', '6.1301', '6.1514', '6.1646', '6.1669', '6.1709', '6.1710', '6.1744', '6.1776'] |
Outer characteristic polynomial of the knot is: t^7+45t^5+49t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1301'] |
2-strand cable arrow polynomial of the knot is: -384*K1**6 - 192*K1**4*K2**2 + 2080*K1**4*K2 - 6640*K1**4 + 928*K1**3*K2*K3 + 160*K1**3*K3*K4 - 1856*K1**3*K3 - 4976*K1**2*K2**2 - 896*K1**2*K2*K4 + 12600*K1**2*K2 - 1584*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 6876*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 9136*K1*K2*K3 + 2400*K1*K3*K4 + 240*K1*K4*K5 - 376*K2**4 - 128*K2**2*K3**2 - 16*K2**2*K4**2 + 1064*K2**2*K4 - 6204*K2**2 + 216*K2*K3*K5 + 32*K2*K4*K6 - 3232*K3**2 - 1014*K4**2 - 116*K5**2 - 12*K6**2 + 6524 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1301'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3665', 'vk6.3762', 'vk6.3951', 'vk6.4048', 'vk6.4491', 'vk6.4588', 'vk6.5877', 'vk6.6006', 'vk6.7158', 'vk6.7331', 'vk6.7424', 'vk6.7922', 'vk6.8043', 'vk6.9356', 'vk6.17903', 'vk6.17998', 'vk6.18739', 'vk6.24438', 'vk6.24864', 'vk6.25325', 'vk6.37486', 'vk6.43873', 'vk6.44219', 'vk6.44522', 'vk6.48289', 'vk6.48354', 'vk6.50080', 'vk6.50190', 'vk6.50583', 'vk6.50648', 'vk6.55862', 'vk6.60719'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4O5U6U4O6U1U5U3 |
R3 orbit | {'O1O2O3U2O4O5U6U4O6U1U5U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4U3O5U6U5O4O6U2 |
Gauss code of K* | O1O2O3U1U4U3O4U5U2O6O5U6 |
Gauss code of -K* | O1O2O3U4O5O4U2U5O6U1U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 2 0 2 -1],[ 2 0 0 3 1 2 1],[ 1 0 0 1 0 0 1],[-2 -3 -1 0 0 1 -3],[ 0 -1 0 0 0 0 0],[-2 -2 0 -1 0 0 -2],[ 1 -1 -1 3 0 2 0]] |
Primitive based matrix | [[ 0 2 2 0 -1 -1 -2],[-2 0 1 0 -1 -3 -3],[-2 -1 0 0 0 -2 -2],[ 0 0 0 0 0 0 -1],[ 1 1 0 0 0 1 0],[ 1 3 2 0 -1 0 -1],[ 2 3 2 1 0 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,0,1,1,2,-1,0,1,3,3,0,0,2,2,0,0,1,-1,0,1] |
Phi over symmetry | [-2,-2,0,1,1,2,-1,0,1,3,3,0,0,2,2,0,0,1,-1,0,1] |
Phi of -K | [-2,-1,-1,0,2,2,0,1,1,1,2,1,1,0,1,1,2,3,2,2,-1] |
Phi of K* | [-2,-2,0,1,1,2,-1,2,1,3,2,2,0,2,1,1,1,1,-1,0,1] |
Phi of -K* | [-2,-1,-1,0,2,2,0,1,1,2,3,1,0,0,1,0,2,3,0,0,-1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+31t^4+30t^2+1 |
Outer characteristic polynomial | t^7+45t^5+49t^3+4t |
Flat arrow polynomial | -14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8 |
2-strand cable arrow polynomial | -384*K1**6 - 192*K1**4*K2**2 + 2080*K1**4*K2 - 6640*K1**4 + 928*K1**3*K2*K3 + 160*K1**3*K3*K4 - 1856*K1**3*K3 - 4976*K1**2*K2**2 - 896*K1**2*K2*K4 + 12600*K1**2*K2 - 1584*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 6876*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 9136*K1*K2*K3 + 2400*K1*K3*K4 + 240*K1*K4*K5 - 376*K2**4 - 128*K2**2*K3**2 - 16*K2**2*K4**2 + 1064*K2**2*K4 - 6204*K2**2 + 216*K2*K3*K5 + 32*K2*K4*K6 - 3232*K3**2 - 1014*K4**2 - 116*K5**2 - 12*K6**2 + 6524 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice | False |