Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,3,1,1,2,1,0,1,1,1,0,0,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1306'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+30t^5+77t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1306'] |
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 4032*K1**4 - 288*K1**3*K3 - 3888*K1**2*K2**2 - 288*K1**2*K2*K4 + 7504*K1**2*K2 - 2524*K1**2 - 192*K1*K2**2*K3 + 4224*K1*K2*K3 + 328*K1*K3*K4 - 360*K2**4 + 560*K2**2*K4 - 2768*K2**2 - 1068*K3**2 - 234*K4**2 + 2800 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1306'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13390', 'vk6.13479', 'vk6.13670', 'vk6.13772', 'vk6.14204', 'vk6.14453', 'vk6.15680', 'vk6.16130', 'vk6.16756', 'vk6.16769', 'vk6.16882', 'vk6.19041', 'vk6.19312', 'vk6.19607', 'vk6.23168', 'vk6.23265', 'vk6.25656', 'vk6.26500', 'vk6.33145', 'vk6.33204', 'vk6.33301', 'vk6.35159', 'vk6.35192', 'vk6.37748', 'vk6.42662', 'vk6.42679', 'vk6.42778', 'vk6.44736', 'vk6.53574', 'vk6.53704', 'vk6.54966', 'vk6.64618'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4O5O4U6U1O6U5U3U2 |
R3 orbit | {'O1O2O3U4O5O4U6U1O6U5U3U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U1U4O5U3U5O6O4U6 |
Gauss code of K* | O1O2O3U4U3U2O5U1U5O6O4U6 |
Gauss code of -K* | O1O2O3U4O5O4U6U3O6U2U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 1 1 0 -1],[ 2 0 2 1 2 -1 2],[-1 -2 0 0 0 -1 -1],[-1 -1 0 0 0 -1 -1],[-1 -2 0 0 0 0 -2],[ 0 1 1 1 0 0 0],[ 1 -2 1 1 2 0 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 -2 -2],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -1 -2],[ 0 0 1 1 0 0 1],[ 1 2 1 1 0 0 -2],[ 2 2 1 2 -1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,0,0,0,2,2,0,1,1,1,1,1,2,0,-1,2] |
Phi over symmetry | [-2,-1,0,1,1,1,-1,3,1,1,2,1,0,1,1,1,0,0,0,0,0] |
Phi of -K | [-2,-1,0,1,1,1,-1,3,1,1,2,1,0,1,1,1,0,0,0,0,0] |
Phi of K* | [-1,-1,-1,0,1,2,0,0,0,1,1,0,0,1,2,1,0,1,1,3,-1] |
Phi of -K* | [-2,-1,0,1,1,1,2,-1,1,2,2,0,1,1,2,1,1,0,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 8z^2+27z+23 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+12w^3z^2+27w^2z+23w |
Inner characteristic polynomial | t^6+22t^4+44t^2+4 |
Outer characteristic polynomial | t^7+30t^5+77t^3+9t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | 224*K1**4*K2 - 4032*K1**4 - 288*K1**3*K3 - 3888*K1**2*K2**2 - 288*K1**2*K2*K4 + 7504*K1**2*K2 - 2524*K1**2 - 192*K1*K2**2*K3 + 4224*K1*K2*K3 + 328*K1*K3*K4 - 360*K2**4 + 560*K2**2*K4 - 2768*K2**2 - 1068*K3**2 - 234*K4**2 + 2800 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |