Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1307

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,0,0,1,2,1,-1,1,3,2,0,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1307']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+44t^5+200t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1307']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 448*K1**4*K2 - 3104*K1**4 + 192*K1**3*K2*K3 - 192*K1**3*K3 - 3968*K1**2*K2**2 - 256*K1**2*K2*K4 + 7936*K1**2*K2 - 352*K1**2*K3**2 - 5000*K1**2 - 576*K1*K2**2*K3 - 128*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5984*K1*K2*K3 + 1200*K1*K3*K4 + 272*K1*K4*K5 + 64*K1*K5*K6 - 1024*K2**4 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 1856*K2**2*K4 - 4748*K2**2 + 688*K2*K3*K5 + 32*K2*K4*K6 - 2336*K3**2 - 1072*K4**2 - 392*K5**2 - 44*K6**2 + 5014
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1307']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13943', 'vk6.14039', 'vk6.15014', 'vk6.15136', 'vk6.17442', 'vk6.17463', 'vk6.23954', 'vk6.23987', 'vk6.33756', 'vk6.33831', 'vk6.34299', 'vk6.36253', 'vk6.43417', 'vk6.53891', 'vk6.53925', 'vk6.54439', 'vk6.55594', 'vk6.60085', 'vk6.60101', 'vk6.65312']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O4U6U2O6U1U5U3
R3 orbit {'O1O2O3U4O5O4U6U2O6U1U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U3O5U2U5O6O4U6
Gauss code of K* O1O2O3U1U4U3O5U2U5O6O4U6
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 1 1 -1],[ 2 0 1 3 2 1 1],[ 1 -1 0 1 1 -1 1],[-2 -3 -1 0 -1 -1 -2],[-1 -2 -1 1 0 1 -2],[-1 -1 1 1 -1 0 -1],[ 1 -1 -1 2 2 1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 -3],[-1 1 0 1 -1 -2 -2],[-1 1 -1 0 1 -1 -1],[ 1 1 1 -1 0 1 -1],[ 1 2 2 1 -1 0 -1],[ 2 3 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,1,2,3,-1,1,2,2,-1,1,1,-1,1,1]
Phi over symmetry [-2,-1,-1,1,1,2,0,0,1,2,1,-1,1,3,2,0,1,1,-1,0,0]
Phi of -K [-2,-1,-1,1,1,2,0,0,1,2,1,-1,1,3,2,0,1,1,-1,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,1,2,1,-1,1,3,2,0,1,1,-1,0,0]
Phi of -K* [-2,-1,-1,1,1,2,1,1,1,2,3,-1,1,2,2,-1,1,1,-1,1,1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+22z+37
Enhanced Jones-Krushkal polynomial 2w^3z^2+22w^2z+37w
Inner characteristic polynomial t^6+32t^4+132t^2+1
Outer characteristic polynomial t^7+44t^5+200t^3+7t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -128*K1**4*K2**2 + 448*K1**4*K2 - 3104*K1**4 + 192*K1**3*K2*K3 - 192*K1**3*K3 - 3968*K1**2*K2**2 - 256*K1**2*K2*K4 + 7936*K1**2*K2 - 352*K1**2*K3**2 - 5000*K1**2 - 576*K1*K2**2*K3 - 128*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5984*K1*K2*K3 + 1200*K1*K3*K4 + 272*K1*K4*K5 + 64*K1*K5*K6 - 1024*K2**4 - 224*K2**2*K3**2 - 16*K2**2*K4**2 + 1856*K2**2*K4 - 4748*K2**2 + 688*K2*K3*K5 + 32*K2*K4*K6 - 2336*K3**2 - 1072*K4**2 - 392*K5**2 - 44*K6**2 + 5014
Genus of based matrix 0
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice True
Contact