Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1314

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,2,3,2,0,1,2,1,1,0,2,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1314']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+44t^5+123t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1314']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 480*K1**4*K2 - 672*K1**4 + 32*K1**3*K2*K3 - 96*K1**3*K3 - 1024*K1**2*K2**4 + 2656*K1**2*K2**3 - 6464*K1**2*K2**2 - 576*K1**2*K2*K4 + 4928*K1**2*K2 - 256*K1**2*K3**2 - 2952*K1**2 + 1408*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 320*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4968*K1*K2*K3 + 800*K1*K3*K4 + 56*K1*K4*K5 - 1944*K2**4 - 544*K2**2*K3**2 - 8*K2**2*K4**2 + 1608*K2**2*K4 - 1518*K2**2 + 344*K2*K3*K5 + 8*K2*K4*K6 - 1120*K3**2 - 498*K4**2 - 80*K5**2 - 2*K6**2 + 2352
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1314']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73980', 'vk6.73985', 'vk6.74499', 'vk6.74508', 'vk6.75955', 'vk6.75966', 'vk6.76711', 'vk6.76720', 'vk6.78951', 'vk6.78954', 'vk6.79500', 'vk6.79503', 'vk6.80481', 'vk6.80484', 'vk6.80955', 'vk6.80958', 'vk6.83010', 'vk6.83098', 'vk6.83654', 'vk6.83786', 'vk6.83945', 'vk6.84118', 'vk6.84265', 'vk6.85179', 'vk6.85544', 'vk6.85870', 'vk6.86260', 'vk6.86584', 'vk6.86740', 'vk6.87450', 'vk6.88310', 'vk6.89743']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U1U2O4U6U5U3
R3 orbit {'O1O2O3U4O5O6U1U2O4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O6U2U3O5O4U6
Gauss code of K* O1O2O3U4U5U3O6U2U1O4O5U6
Gauss code of -K* O1O2O3U4O5O6U3U2O4U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 0 1 1],[ 3 0 1 3 2 2 1],[ 1 -1 0 2 1 1 0],[-2 -3 -2 0 0 -1 -1],[ 0 -2 -1 0 0 0 1],[-1 -2 -1 1 0 0 0],[-1 -1 0 1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 -1 -1 0 -2 -3],[-1 1 0 0 0 -1 -2],[-1 1 0 0 -1 0 -1],[ 0 0 0 1 0 -1 -2],[ 1 2 1 0 1 0 -1],[ 3 3 2 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,1,1,0,2,3,0,0,1,2,1,0,1,1,2,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,2,3,2,0,1,2,1,1,0,2,0,0,0]
Phi of -K [-3,-1,0,1,1,2,1,1,2,3,2,0,1,2,1,1,0,2,0,0,0]
Phi of K* [-2,-1,-1,0,1,3,0,0,2,1,2,0,0,2,3,1,1,2,0,1,1]
Phi of -K* [-3,-1,0,1,1,2,1,2,1,2,3,1,0,1,2,1,0,0,0,1,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+9w^3z^2-2w^3z+26w^2z+21w
Inner characteristic polynomial t^6+28t^4+54t^2+1
Outer characteristic polynomial t^7+44t^5+123t^3+9t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -256*K1**4*K2**2 + 480*K1**4*K2 - 672*K1**4 + 32*K1**3*K2*K3 - 96*K1**3*K3 - 1024*K1**2*K2**4 + 2656*K1**2*K2**3 - 6464*K1**2*K2**2 - 576*K1**2*K2*K4 + 4928*K1**2*K2 - 256*K1**2*K3**2 - 2952*K1**2 + 1408*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 320*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4968*K1*K2*K3 + 800*K1*K3*K4 + 56*K1*K4*K5 - 1944*K2**4 - 544*K2**2*K3**2 - 8*K2**2*K4**2 + 1608*K2**2*K4 - 1518*K2**2 + 344*K2*K3*K5 + 8*K2*K4*K6 - 1120*K3**2 - 498*K4**2 - 80*K5**2 - 2*K6**2 + 2352
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact