Gauss code |
O1O2O3O4O5O6U4U5U6U1U2U3 |
R3 orbit |
{'O1O2O3O4O5O6U4U5U6U1U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
Same |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
a |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 -2 0 2],[ 2 0 1 2 -2 0 2],[ 0 -1 0 1 -2 0 2],[-2 -2 -1 0 -2 0 2],[ 2 2 2 2 0 1 2],[ 0 0 0 0 -1 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -2 -2],[-2 0 2 0 -1 -2 -2],[-2 -2 0 -1 -2 -2 -2],[ 0 0 1 0 0 0 -1],[ 0 1 2 0 0 -1 -2],[ 2 2 2 0 1 0 -2],[ 2 2 2 1 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,2,2,-2,0,1,2,2,1,2,2,2,0,0,1,1,2,2] |
Phi over symmetry |
[-2,-2,0,0,2,2,-2,0,1,2,2,1,2,2,2,0,0,1,1,2,2] |
Phi of -K |
[-2,-2,0,0,2,2,-2,0,1,2,2,1,2,2,2,0,0,1,1,2,2] |
Phi of K* |
[-2,-2,0,0,2,2,-2,0,1,2,2,1,2,2,2,0,0,1,1,2,2] |
Phi of -K* |
[-2,-2,0,0,2,2,-2,0,1,2,2,1,2,2,2,0,0,1,1,2,2] |
Symmetry type of based matrix |
a |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z^2+2z+1 |
Enhanced Jones-Krushkal polynomial |
-8w^4z^2+9w^3z^2+2w^2z+1 |
Inner characteristic polynomial |
t^6+36t^4+36t^2 |
Outer characteristic polynomial |
t^7+52t^5+132t^3 |
Flat arrow polynomial |
-16*K1**4 + 8*K1**2*K2 + 8*K1**2 + 1 |
2-strand cable arrow polynomial |
-2816*K2**8 + 1536*K2**6*K4 - 2304*K2**6 - 64*K2**4*K4**2 + 2048*K2**4*K4 + 256*K2**4 - 128*K2**2*K4**2 + 800*K2**2*K4 + 672*K2**2 - 64*K4**2 + 62 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {5}, {1, 3}, {2}]] |
If K is slice |
True |