Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1320

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,1,1,1,2,1,1,1,3,1,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1320']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+37t^5+49t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1320']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 288*K1**4*K2 - 2576*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 64*K1**2*K2**2*K4 - 2592*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 416*K1**2*K2*K4 + 6112*K1**2*K2 - 752*K1**2*K3**2 - 192*K1**2*K3*K5 - 320*K1**2*K4**2 - 96*K1**2*K4*K6 - 3988*K1**2 - 512*K1*K2**2*K3 - 480*K1*K2*K3*K4 + 4472*K1*K2*K3 + 2056*K1*K3*K4 + 616*K1*K4*K5 + 24*K1*K5*K6 - 152*K2**4 - 112*K2**2*K3**2 - 112*K2**2*K4**2 + 992*K2**2*K4 - 3556*K2**2 + 384*K2*K3*K5 + 112*K2*K4*K6 - 1920*K3**2 - 1038*K4**2 - 220*K5**2 - 28*K6**2 + 3780
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1320']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17100', 'vk6.17341', 'vk6.20586', 'vk6.21993', 'vk6.23487', 'vk6.23824', 'vk6.28048', 'vk6.29505', 'vk6.35640', 'vk6.36079', 'vk6.39458', 'vk6.41657', 'vk6.43004', 'vk6.43314', 'vk6.46042', 'vk6.47708', 'vk6.55239', 'vk6.55489', 'vk6.57472', 'vk6.58633', 'vk6.59637', 'vk6.59983', 'vk6.62143', 'vk6.63103', 'vk6.65041', 'vk6.65238', 'vk6.66996', 'vk6.67859', 'vk6.68306', 'vk6.68454', 'vk6.69611', 'vk6.70302']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U2U6O4U1U5U3
R3 orbit {'O1O2O3U4O5O6U2U6O4U1U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U3O5U6U2O6O4U5
Gauss code of K* O1O2O3U1U4U3O5U2U6O4O6U5
Gauss code of -K* O1O2O3U4O5O6U5U2O4U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 0 1 1],[ 2 0 0 3 1 1 1],[ 2 0 0 2 1 1 1],[-2 -3 -2 0 -1 -1 0],[ 0 -1 -1 1 0 1 1],[-1 -1 -1 1 -1 0 0],[-1 -1 -1 0 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -1 -1 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 -1 -1 -1],[ 0 1 1 1 0 -1 -1],[ 2 2 1 1 1 0 0],[ 2 3 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,1,1,2,3,0,1,1,1,1,1,1,1,1,0]
Phi over symmetry [-2,-2,0,1,1,2,0,1,1,1,2,1,1,1,3,1,1,1,0,0,1]
Phi of -K [-2,-2,0,1,1,2,0,1,2,2,1,1,2,2,2,0,0,1,0,0,1]
Phi of K* [-2,-1,-1,0,2,2,0,1,1,1,2,0,0,2,2,0,2,2,1,1,0]
Phi of -K* [-2,-2,0,1,1,2,0,1,1,1,2,1,1,1,3,1,1,1,0,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+18z+33
Enhanced Jones-Krushkal polynomial w^3z^2+18w^2z+33w
Inner characteristic polynomial t^6+23t^4+24t^2
Outer characteristic polynomial t^7+37t^5+49t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 288*K1**4*K2 - 2576*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 64*K1**2*K2**2*K4 - 2592*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 416*K1**2*K2*K4 + 6112*K1**2*K2 - 752*K1**2*K3**2 - 192*K1**2*K3*K5 - 320*K1**2*K4**2 - 96*K1**2*K4*K6 - 3988*K1**2 - 512*K1*K2**2*K3 - 480*K1*K2*K3*K4 + 4472*K1*K2*K3 + 2056*K1*K3*K4 + 616*K1*K4*K5 + 24*K1*K5*K6 - 152*K2**4 - 112*K2**2*K3**2 - 112*K2**2*K4**2 + 992*K2**2*K4 - 3556*K2**2 + 384*K2*K3*K5 + 112*K2*K4*K6 - 1920*K3**2 - 1038*K4**2 - 220*K5**2 - 28*K6**2 + 3780
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact