Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1322

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,1,-1,1,1,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.1322']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+27t^5+40t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1322']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 1088*K1**2*K2**3 - 3424*K1**2*K2**2 - 576*K1**2*K2*K4 + 3616*K1**2*K2 - 80*K1**2*K3**2 - 2404*K1**2 + 192*K1*K2**3*K3 - 320*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2624*K1*K2*K3 + 368*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 752*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 664*K2**2*K4 - 1382*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 544*K3**2 - 228*K4**2 - 12*K5**2 - 2*K6**2 + 1698
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1322']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11454', 'vk6.11753', 'vk6.12767', 'vk6.13109', 'vk6.20674', 'vk6.22113', 'vk6.28177', 'vk6.29601', 'vk6.31212', 'vk6.31557', 'vk6.32384', 'vk6.32791', 'vk6.39622', 'vk6.41861', 'vk6.46230', 'vk6.47835', 'vk6.52210', 'vk6.52475', 'vk6.53039', 'vk6.53361', 'vk6.57612', 'vk6.58771', 'vk6.62276', 'vk6.63215', 'vk6.63779', 'vk6.63892', 'vk6.64205', 'vk6.64391', 'vk6.67070', 'vk6.67936', 'vk6.69684', 'vk6.70366']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U3U6O4U1U2U5
R3 orbit {'O1O2O3U4O5O6U3U6O4U1U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U3O5U6U1O6O4U5
Gauss code of K* O1O2O3U1U2U4O5U3U6O4O6U5
Gauss code of -K* O1O2O3U4O5O6U5U1O4U6U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 0 2 1],[ 2 0 1 0 1 2 1],[ 0 -1 0 0 -1 1 1],[ 1 0 0 0 0 1 1],[ 0 -1 1 0 0 2 1],[-2 -2 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -1 -2],[-1 0 0 -1 -1 -1 -1],[ 0 1 1 0 -1 0 -1],[ 0 2 1 1 0 0 -1],[ 1 1 1 0 0 0 0],[ 2 2 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,1,2,1,2,1,1,1,1,1,0,1,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,1,-1,1,1,1,2,0]
Phi of -K [-2,-1,0,0,1,2,1,1,1,2,2,1,1,1,2,-1,0,0,0,1,1]
Phi of K* [-2,-1,0,0,1,2,1,0,1,2,2,0,0,1,2,1,1,1,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,1,-1,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial 5w^3z^2+22w^2z+25w
Inner characteristic polynomial t^6+17t^4+12t^2
Outer characteristic polynomial t^7+27t^5+40t^3+4t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -384*K1**4*K2**2 + 608*K1**4*K2 - 720*K1**4 + 224*K1**3*K2*K3 - 96*K1**3*K3 + 1088*K1**2*K2**3 - 3424*K1**2*K2**2 - 576*K1**2*K2*K4 + 3616*K1**2*K2 - 80*K1**2*K3**2 - 2404*K1**2 + 192*K1*K2**3*K3 - 320*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2624*K1*K2*K3 + 368*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 752*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 664*K2**2*K4 - 1382*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 544*K3**2 - 228*K4**2 - 12*K5**2 - 2*K6**2 + 1698
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact