Gauss code |
O1O2O3U1O4O5U2U6U4O6U3U5 |
R3 orbit |
{'O1O2O3U1O4O5U2U6U4O6U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1O5U6U5U2O4O6U3 |
Gauss code of K* |
O1O2O3U2O4O5U6U1U4O6U3U5 |
Gauss code of -K* |
O1O2O3U4U1O5U6U3U5O4O6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 1 1 3 -1],[ 2 0 1 2 1 2 2],[ 2 -1 0 2 1 3 1],[-1 -2 -2 0 1 2 -2],[-1 -1 -1 -1 0 0 -1],[-3 -2 -3 -2 0 0 -3],[ 1 -2 -1 2 1 3 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 0 -2 -3 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -2 -2 -2],[ 1 3 1 2 0 -2 -1],[ 2 2 1 2 2 0 1],[ 2 3 1 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,2,2,0,2,3,2,3,1,1,1,1,2,2,2,2,1,-1] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,2,1,2,3,1,0,1,1,1,2,2,0,-1,-1] |
Phi of -K |
[-2,-2,-1,1,1,3,-1,-1,1,2,3,0,1,2,2,0,1,1,-1,0,2] |
Phi of K* |
[-3,-1,-1,1,2,2,0,2,1,2,3,1,0,1,1,1,2,2,0,-1,-1] |
Phi of -K* |
[-2,-2,-1,1,1,3,-1,1,1,2,3,2,1,2,2,1,2,3,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+48t^4+19t^2+1 |
Outer characteristic polynomial |
t^7+68t^5+35t^3+4t |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 2*K1*K2 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 1888*K1**4*K2 - 4704*K1**4 + 384*K1**3*K2*K3 - 448*K1**3*K3 - 192*K1**2*K2**4 + 672*K1**2*K2**3 - 5712*K1**2*K2**2 - 288*K1**2*K2*K4 + 8736*K1**2*K2 - 32*K1**2*K3**2 - 3040*K1**2 + 224*K1*K2**3*K3 - 480*K1*K2**2*K3 - 64*K1*K2**2*K5 + 3880*K1*K2*K3 + 80*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 496*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 512*K2**2*K4 - 2872*K2**2 + 24*K2*K3*K5 - 624*K3**2 - 76*K4**2 + 2938 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |