| Gauss code |
O1O2O3U1O4O5U3U2U5O6U4U6 |
| R3 orbit |
{'O1O2O3U1O4O5U3U2U5O6U4U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5O4U6U2U1O6O5U3 |
| Gauss code of K* |
O1O2O3U4O5O4U6U2U1O6U5U3 |
| Gauss code of -K* |
O1O2O3U1U4O5U3U2U5O6O4U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -2 -1 -1 1 2 1],[ 2 0 2 1 2 2 0],[ 1 -2 0 0 3 2 1],[ 1 -1 0 0 2 1 1],[-1 -2 -3 -2 0 0 1],[-2 -2 -2 -1 0 0 0],[-1 0 -1 -1 -1 0 0]] |
| Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 0 -1 -2 -2],[-1 0 0 1 -2 -3 -2],[-1 0 -1 0 -1 -1 0],[ 1 1 2 1 0 0 -1],[ 1 2 3 1 0 0 -2],[ 2 2 2 0 1 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,0,1,2,2,-1,2,3,2,1,1,0,0,1,2] |
| Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,3,2,0,-1,1,1,0,1,2,-1,1,1] |
| Phi of -K |
[-2,-1,-1,1,1,2,-1,0,1,3,2,0,-1,1,1,0,1,2,-1,1,1] |
| Phi of K* |
[-2,-1,-1,1,1,2,1,1,1,2,2,-1,1,1,3,-1,0,1,0,-1,0] |
| Phi of -K* |
[-2,-1,-1,1,1,2,1,2,0,2,2,0,1,2,1,1,3,2,-1,0,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
2z^2+7z+7 |
| Enhanced Jones-Krushkal polynomial |
-4w^4z^2+6w^3z^2-12w^3z+19w^2z+7w |
| Inner characteristic polynomial |
t^6+34t^4+31t^2 |
| Outer characteristic polynomial |
t^7+46t^5+87t^3+10t |
| Flat arrow polynomial |
4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
| 2-strand cable arrow polynomial |
-576*K1**2*K2**4 + 1024*K1**2*K2**3 - 4496*K1**2*K2**2 - 288*K1**2*K2*K4 + 3568*K1**2*K2 - 2392*K1**2 + 672*K1*K2**3*K3 - 864*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4232*K1*K2*K3 + 392*K1*K3*K4 - 288*K2**6 + 448*K2**4*K4 - 1888*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 208*K2**2*K4**2 + 1776*K2**2*K4 - 1374*K2**2 + 40*K2*K3*K5 + 48*K2*K4*K6 - 1040*K3**2 - 468*K4**2 - 2*K6**2 + 1986 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
| If K is slice |
False |