Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1333

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,3,2,2,1,1,1,0,1,1,1,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.1333']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+41t^5+35t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1333']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 1120*K1**4*K2 - 3984*K1**4 + 160*K1**3*K2*K3 - 1888*K1**3*K3 - 2864*K1**2*K2**2 - 256*K1**2*K2*K4 + 9824*K1**2*K2 - 272*K1**2*K3**2 - 5776*K1**2 - 32*K1*K2**2*K3 + 5232*K1*K2*K3 + 400*K1*K3*K4 - 64*K2**4 + 216*K2**2*K4 - 4208*K2**2 - 1536*K3**2 - 168*K4**2 + 4222
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1333']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16551', 'vk6.16644', 'vk6.18140', 'vk6.18476', 'vk6.22954', 'vk6.23075', 'vk6.24599', 'vk6.25012', 'vk6.34951', 'vk6.35072', 'vk6.36738', 'vk6.37157', 'vk6.42524', 'vk6.42635', 'vk6.44010', 'vk6.44322', 'vk6.54798', 'vk6.54883', 'vk6.55954', 'vk6.56254', 'vk6.59230', 'vk6.59308', 'vk6.60492', 'vk6.60858', 'vk6.64780', 'vk6.64845', 'vk6.65619', 'vk6.65926', 'vk6.68082', 'vk6.68147', 'vk6.68694', 'vk6.68905']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U3U4U2O6U5U6
R3 orbit {'O1O2O3U1O4O5U3U4U2O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U2U6U1O5O6U3
Gauss code of K* O1O2O3U4O5O4U6U3U1O6U2U5
Gauss code of -K* O1O2O3U4U2O5U3U1U5O6O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 0 2 1],[ 2 0 2 1 1 2 0],[ 0 -2 0 -1 1 3 1],[ 1 -1 1 0 1 2 1],[ 0 -1 -1 -1 0 1 1],[-2 -2 -3 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -3 -2 -2],[-1 -1 0 -1 -1 -1 0],[ 0 1 1 0 -1 -1 -1],[ 0 3 1 1 0 -1 -2],[ 1 2 1 1 1 0 -1],[ 2 2 0 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,-1,1,3,2,2,1,1,1,0,1,1,1,1,2,1]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,3,2,2,1,1,1,0,1,1,1,1,2,1]
Phi of -K [-2,-1,0,0,1,2,0,0,1,3,2,0,0,1,1,-1,0,-1,0,1,2]
Phi of K* [-2,-1,0,0,1,2,2,-1,1,1,2,0,0,1,3,1,0,0,0,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,0,2,1,1,1,2,-1,1,1,1,3,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+31t^4+13t^2+1
Outer characteristic polynomial t^7+41t^5+35t^3+6t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 1120*K1**4*K2 - 3984*K1**4 + 160*K1**3*K2*K3 - 1888*K1**3*K3 - 2864*K1**2*K2**2 - 256*K1**2*K2*K4 + 9824*K1**2*K2 - 272*K1**2*K3**2 - 5776*K1**2 - 32*K1*K2**2*K3 + 5232*K1*K2*K3 + 400*K1*K3*K4 - 64*K2**4 + 216*K2**2*K4 - 4208*K2**2 - 1536*K3**2 - 168*K4**2 + 4222
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact