Gauss code |
O1O2O3O4O5O6U4U5U6U3U1U2 |
R3 orbit |
{'O1O2O3O4O5O6U4U5U6U3U1U2', 'O1O2O3O4O5U3O6U5U4U6U1U2', 'O1O2O3O4O5U3U4U5U6U1O6U2'} |
R3 orbit length |
3 |
Gauss code of -K |
O1O2O3O4O5O6U5U6U4U1U2U3 |
Gauss code of K* |
O1O2O3O4O5O6U5U6U4U1U2U3 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 0 -2 0 2],[ 1 0 1 0 -2 0 2],[-1 -1 0 0 -2 0 2],[ 0 0 0 0 -2 0 2],[ 2 2 2 2 0 1 2],[ 0 0 0 0 -1 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -2 -2 -2],[-1 2 0 0 0 -1 -2],[ 0 1 0 0 0 0 -1],[ 0 2 0 0 0 0 -2],[ 1 2 1 0 0 0 -2],[ 2 2 2 1 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,2,1,2,2,2,0,0,1,2,0,0,1,0,2,2] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,0,1,1,2,1,1,1,1,0,1,0,1,1,-1] |
Phi of -K |
[-2,-1,0,0,1,2,-1,0,1,1,2,1,1,1,1,0,1,0,1,1,-1] |
Phi of K* |
[-2,-1,0,0,1,2,-1,0,1,1,2,1,1,1,1,0,1,0,1,1,-1] |
Phi of -K* |
[-2,-1,0,0,1,2,2,1,2,2,2,0,0,1,2,0,0,1,0,2,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
-z-1 |
Enhanced Jones-Krushkal polynomial |
-10w^3z+9w^2z-w |
Inner characteristic polynomial |
t^6+31t^4+14t^2 |
Outer characteristic polynomial |
t^7+41t^5+50t^3 |
Flat arrow polynomial |
8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
2-strand cable arrow polynomial |
-384*K1**2*K2**4 + 256*K1**2*K2**3 - 992*K1**2*K2**2 + 480*K1**2*K2 - 160*K1**2 + 384*K1*K2**3*K3 + 608*K1*K2*K3 - 192*K2**6 + 192*K2**4*K4 - 448*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 256*K2**2*K4 + 112*K2**2 - 96*K3**2 - 48*K4**2 + 174 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}]] |
If K is slice |
True |