Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1342

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,2,1,1,0,1,0,1,1,0,2,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.1342']
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717']
Outer characteristic polynomial of the knot is: t^7+29t^5+49t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1342']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 736*K1**4*K2 - 4144*K1**4 + 480*K1**3*K2*K3 + 128*K1**3*K3*K4 - 768*K1**3*K3 - 3328*K1**2*K2**2 - 576*K1**2*K2*K4 + 9248*K1**2*K2 - 1232*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 6020*K1**2 - 416*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 6664*K1*K2*K3 + 2016*K1*K3*K4 + 392*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**4 - 16*K2**2*K3**2 - 16*K2**2*K4**2 + 784*K2**2*K4 - 5204*K2**2 + 264*K2*K3*K5 + 32*K2*K4*K6 + 32*K3**2*K6 - 2660*K3**2 - 948*K4**2 - 240*K5**2 - 44*K6**2 + 5458
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1342']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3655', 'vk6.3752', 'vk6.3945', 'vk6.4042', 'vk6.4481', 'vk6.4578', 'vk6.5863', 'vk6.5992', 'vk6.7148', 'vk6.7325', 'vk6.7418', 'vk6.7920', 'vk6.8041', 'vk6.9350', 'vk6.17900', 'vk6.17997', 'vk6.18762', 'vk6.24439', 'vk6.24881', 'vk6.25344', 'vk6.37501', 'vk6.43874', 'vk6.44228', 'vk6.44533', 'vk6.48295', 'vk6.48360', 'vk6.50086', 'vk6.50200', 'vk6.50565', 'vk6.50630', 'vk6.55861', 'vk6.60736']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U4U3U5O6U2U6
R3 orbit {'O1O2O3U1O4O5U4U3U5O6U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O4U5U1U6O5O6U3
Gauss code of K* O1O2O3U4O5O4U6U5U2O6U1U3
Gauss code of -K* O1O2O3U1U3O4U2U5U4O6O5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 -1 2 1],[ 2 0 2 1 0 1 1],[ 0 -2 0 -1 -1 2 1],[ 0 -1 1 0 0 2 0],[ 1 0 1 0 0 1 0],[-2 -1 -2 -2 -1 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 -2 -2 -1 -1],[-1 0 0 0 -1 0 -1],[ 0 2 0 0 1 0 -1],[ 0 2 1 -1 0 -1 -2],[ 1 1 0 0 1 0 0],[ 2 1 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,2,2,1,1,0,1,0,1,-1,0,1,1,2,0]
Phi over symmetry [-2,-1,0,0,1,2,0,1,2,1,1,0,1,0,1,1,0,2,1,2,0]
Phi of -K [-2,-1,0,0,1,2,1,0,1,2,3,0,1,2,2,1,0,0,1,0,1]
Phi of K* [-2,-1,0,0,1,2,1,0,0,2,3,0,1,2,2,-1,0,0,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,2,1,1,0,1,0,1,1,0,2,1,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 19z+39
Enhanced Jones-Krushkal polynomial 19w^2z+39w
Inner characteristic polynomial t^6+19t^4+21t^2
Outer characteristic polynomial t^7+29t^5+49t^3+5t
Flat arrow polynomial -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5
2-strand cable arrow polynomial -128*K1**6 + 736*K1**4*K2 - 4144*K1**4 + 480*K1**3*K2*K3 + 128*K1**3*K3*K4 - 768*K1**3*K3 - 3328*K1**2*K2**2 - 576*K1**2*K2*K4 + 9248*K1**2*K2 - 1232*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 6020*K1**2 - 416*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 6664*K1*K2*K3 + 2016*K1*K3*K4 + 392*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**4 - 16*K2**2*K3**2 - 16*K2**2*K4**2 + 784*K2**2*K4 - 5204*K2**2 + 264*K2*K3*K5 + 32*K2*K4*K6 + 32*K3**2*K6 - 2660*K3**2 - 948*K4**2 - 240*K5**2 - 44*K6**2 + 5458
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact