Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1355

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,1,1,4,2,0,1,1,0,0,1,1,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1355']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+44t^5+68t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.725', '6.1355']
2-strand cable arrow polynomial of the knot is: -32*K1**4 - 1600*K1**2*K2**4 + 2720*K1**2*K2**3 - 6432*K1**2*K2**2 - 224*K1**2*K2*K4 + 4888*K1**2*K2 - 3052*K1**2 + 992*K1*K2**3*K3 - 288*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3616*K1*K2*K3 + 64*K1*K3*K4 - 288*K2**6 + 160*K2**4*K4 - 1544*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 728*K2**2*K4 - 824*K2**2 + 8*K2*K3*K5 - 548*K3**2 - 106*K4**2 + 1880
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1355']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10512', 'vk6.10516', 'vk6.10585', 'vk6.10593', 'vk6.10774', 'vk6.10782', 'vk6.10889', 'vk6.10893', 'vk6.17676', 'vk6.17678', 'vk6.17725', 'vk6.17727', 'vk6.24286', 'vk6.24288', 'vk6.30197', 'vk6.30201', 'vk6.30272', 'vk6.30280', 'vk6.30401', 'vk6.30409', 'vk6.36512', 'vk6.36514', 'vk6.43616', 'vk6.43618', 'vk6.43720', 'vk6.43722', 'vk6.60352', 'vk6.60354', 'vk6.63457', 'vk6.63461', 'vk6.65419', 'vk6.65421']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4O5U1U4U5O6U3U6
R3 orbit {'O1O2O3U2O4O5U1U4U5O6U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O4U5U6U3O5O6U2
Gauss code of K* O1O2O3U4O5O4U1U6U5O6U2U3
Gauss code of -K* O1O2O3U1U2O4U5U4U3O6O5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 0 2 1],[ 3 0 0 4 1 2 1],[ 1 0 0 1 0 0 1],[-1 -4 -1 0 -1 1 1],[ 0 -1 0 1 0 1 0],[-2 -2 0 -1 -1 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -1 0 -2],[-1 0 0 -1 0 -1 -1],[-1 1 1 0 -1 -1 -4],[ 0 1 0 1 0 0 -1],[ 1 0 1 1 0 0 0],[ 3 2 1 4 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,1,1,0,2,1,0,1,1,1,1,4,0,1,0]
Phi over symmetry [-3,-1,0,1,1,2,0,1,1,4,2,0,1,1,0,0,1,1,-1,0,1]
Phi of -K [-3,-1,0,1,1,2,2,2,0,3,3,1,1,1,3,0,1,1,-1,0,1]
Phi of K* [-2,-1,-1,0,1,3,0,1,1,3,3,1,0,1,0,1,1,3,1,2,2]
Phi of -K* [-3,-1,0,1,1,2,0,1,1,4,2,0,1,1,0,0,1,1,-1,0,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w
Inner characteristic polynomial t^6+28t^4+31t^2
Outer characteristic polynomial t^7+44t^5+68t^3+7t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -32*K1**4 - 1600*K1**2*K2**4 + 2720*K1**2*K2**3 - 6432*K1**2*K2**2 - 224*K1**2*K2*K4 + 4888*K1**2*K2 - 3052*K1**2 + 992*K1*K2**3*K3 - 288*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3616*K1*K2*K3 + 64*K1*K3*K4 - 288*K2**6 + 160*K2**4*K4 - 1544*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 728*K2**2*K4 - 824*K2**2 + 8*K2*K3*K5 - 548*K3**2 - 106*K4**2 + 1880
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact