| Gauss code |
O1O2O3U2O4O5U1U5U4O6U3U6 |
| R3 orbit |
{'O1O2O3U2O4O5U1U5U4O6U3U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U1O4U5U6U3O6O5U2 |
| Gauss code of K* |
O1O2O3U4O5O4U1U6U5O6U3U2 |
| Gauss code of -K* |
O1O2O3U2U1O4U5U4U3O6O5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -1 1 1 1 1],[ 3 0 0 4 2 1 1],[ 1 0 0 1 0 0 1],[-1 -4 -1 0 0 0 1],[-1 -2 0 0 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 0 0 0]] |
| Primitive based matrix |
[[ 0 1 1 1 1 -1 -3],[-1 0 1 0 0 -1 -4],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 3 4 1 1 2 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,-1,-1,1,3,-1,0,0,1,4,0,0,1,1,0,0,1,0,2,0] |
| Phi over symmetry |
[-3,-1,1,1,1,1,0,1,1,2,4,0,1,0,1,0,0,0,0,-1,0] |
| Phi of -K |
[-3,-1,1,1,1,1,2,0,2,3,3,1,2,1,2,0,-1,0,0,0,0] |
| Phi of K* |
[-1,-1,-1,-1,1,3,-1,0,0,1,3,0,0,1,0,0,2,2,2,3,2] |
| Phi of -K* |
[-3,-1,1,1,1,1,0,1,1,2,4,0,1,0,1,0,0,0,0,-1,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-3t |
| Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
| Enhanced Jones-Krushkal polynomial |
6w^3z^2-4w^3z+27w^2z+23w |
| Inner characteristic polynomial |
t^6+25t^4+24t^2 |
| Outer characteristic polynomial |
t^7+39t^5+56t^3+8t |
| Flat arrow polynomial |
4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
| 2-strand cable arrow polynomial |
1248*K1**4*K2 - 3040*K1**4 + 672*K1**3*K2*K3 - 608*K1**3*K3 - 128*K1**2*K2**4 + 480*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4128*K1**2*K2**2 - 224*K1**2*K2*K4 + 6128*K1**2*K2 - 736*K1**2*K3**2 - 32*K1**2*K4**2 - 2800*K1**2 + 224*K1*K2**3*K3 - 864*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4344*K1*K2*K3 + 664*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 432*K2**4 - 192*K2**2*K3**2 - 8*K2**2*K4**2 + 368*K2**2*K4 - 2368*K2**2 + 56*K2*K3*K5 - 1144*K3**2 - 116*K4**2 + 2554 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
| If K is slice |
False |