Gauss code |
O1O2O3U2O4O5U1U6U3O6U5U4 |
R3 orbit |
{'O1O2O3U2O4O5U1U6U3O6U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5O6U1U6U3O5O4U2 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4U5O6U1U6U3O5O4U2 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 1 2 2 -1],[ 3 0 0 2 3 2 2],[ 1 0 0 1 1 1 0],[-1 -2 -1 0 1 0 -1],[-2 -3 -1 -1 0 0 -2],[-2 -2 -1 0 0 0 -2],[ 1 -2 0 1 2 2 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 0 0 -1 -2 -2],[-2 0 0 -1 -1 -2 -3],[-1 0 1 0 -1 -1 -2],[ 1 1 1 1 0 0 0],[ 1 2 2 1 0 0 -2],[ 3 2 3 2 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,0,0,1,2,2,1,1,2,3,1,1,2,0,0,2] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,2,2,2,3,0,1,1,1,1,2,2,0,1,0] |
Phi of -K |
[-3,-1,-1,1,2,2,0,2,2,2,3,0,1,1,1,1,2,2,0,1,0] |
Phi of K* |
[-2,-2,-1,1,1,3,0,0,1,2,2,1,1,2,3,1,1,2,0,0,2] |
Phi of -K* |
[-3,-1,-1,1,2,2,0,2,2,2,3,0,1,1,1,1,2,2,0,1,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+34t^4+34t^2+1 |
Outer characteristic polynomial |
t^7+54t^5+62t^3+5t |
Flat arrow polynomial |
4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial |
2240*K1**4*K2 - 5376*K1**4 + 1024*K1**3*K2*K3 - 1344*K1**3*K3 - 128*K1**2*K2**4 + 896*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 5760*K1**2*K2**2 - 768*K1**2*K2*K4 + 8784*K1**2*K2 - 1280*K1**2*K3**2 - 96*K1**2*K4**2 - 3256*K1**2 + 192*K1*K2**3*K3 - 1728*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6704*K1*K2*K3 + 1728*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 720*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 1264*K2**2*K4 - 3592*K2**2 + 128*K2*K3*K5 - 1896*K3**2 - 628*K4**2 - 48*K5**2 + 3682 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |