Min(phi) over symmetries of the knot is: [-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1360'] |
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384'] |
Outer characteristic polynomial of the knot is: t^7+43t^5+63t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1360'] |
2-strand cable arrow polynomial of the knot is: -1280*K1**4*K2**2 + 2752*K1**4*K2 - 4416*K1**4 - 128*K1**3*K3 + 2048*K1**2*K2**3 - 8992*K1**2*K2**2 - 192*K1**2*K2*K4 + 10000*K1**2*K2 - 64*K1**2*K3**2 - 4584*K1**2 + 256*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7152*K1*K2*K3 + 752*K1*K3*K4 + 64*K1*K4*K5 - 1248*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 1512*K2**2*K4 - 4166*K2**2 + 192*K2*K3*K5 + 8*K2*K4*K6 - 1808*K3**2 - 612*K4**2 - 56*K5**2 - 2*K6**2 + 4514 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1360'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11597', 'vk6.11948', 'vk6.12939', 'vk6.13250', 'vk6.20433', 'vk6.21794', 'vk6.27801', 'vk6.29312', 'vk6.31392', 'vk6.32566', 'vk6.32950', 'vk6.39229', 'vk6.41441', 'vk6.47561', 'vk6.53192', 'vk6.53505', 'vk6.57294', 'vk6.61972', 'vk6.64285', 'vk6.64495'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is +. |
The reverse -K is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4O5U3U6U1O6U4U5 |
R3 orbit | {'O1O2O3U2O4O5U3U6U1O6U4U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O6U3U6U1O4O5U2 |
Gauss code of K* | Same |
Gauss code of -K* | O1O2O3U4U5O6U3U6U1O4O5U2 |
Diagrammatic symmetry type | + |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 -1 1 3 -1],[ 1 0 -1 1 1 2 1],[ 1 1 0 1 1 1 1],[ 1 -1 -1 0 1 2 1],[-1 -1 -1 -1 0 1 -1],[-3 -2 -1 -2 -1 0 -3],[ 1 -1 -1 -1 1 3 0]] |
Primitive based matrix | [[ 0 3 1 -1 -1 -1 -1],[-3 0 -1 -1 -2 -2 -3],[-1 1 0 -1 -1 -1 -1],[ 1 1 1 0 1 1 1],[ 1 2 1 -1 0 1 1],[ 1 2 1 -1 -1 0 1],[ 1 3 1 -1 -1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
Phi over symmetry | [-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
Phi of -K | [-1,-1,-1,-1,1,3,-1,-1,-1,1,3,-1,-1,1,2,-1,1,2,1,1,1] |
Phi of K* | [-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
Phi of -K* | [-1,-1,-1,-1,1,3,-1,-1,-1,1,3,-1,-1,1,2,-1,1,2,1,1,1] |
Symmetry type of based matrix | + |
u-polynomial | -t^3+3t |
Normalized Jones-Krushkal polynomial | 6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+27w^2z+31w |
Inner characteristic polynomial | t^6+29t^4+25t^2+1 |
Outer characteristic polynomial | t^7+43t^5+63t^3+5t |
Flat arrow polynomial | -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial | -1280*K1**4*K2**2 + 2752*K1**4*K2 - 4416*K1**4 - 128*K1**3*K3 + 2048*K1**2*K2**3 - 8992*K1**2*K2**2 - 192*K1**2*K2*K4 + 10000*K1**2*K2 - 64*K1**2*K3**2 - 4584*K1**2 + 256*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7152*K1*K2*K3 + 752*K1*K3*K4 + 64*K1*K4*K5 - 1248*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 1512*K2**2*K4 - 4166*K2**2 + 192*K2*K3*K5 + 8*K2*K4*K6 - 1808*K3**2 - 612*K4**2 - 56*K5**2 - 2*K6**2 + 4514 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}]] |
If K is slice | False |