| Gauss code |
O1O2O3U2O4O5U3U6U1O6U4U5 |
| R3 orbit |
{'O1O2O3U2O4O5U3U6U1O6U4U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U5O6U3U6U1O4O5U2 |
| Gauss code of K* |
Same |
| Gauss code of -K* |
O1O2O3U4U5O6U3U6U1O4O5U2 |
| Diagrammatic symmetry type |
+ |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 -1 -1 1 3 -1],[ 1 0 -1 1 1 2 1],[ 1 1 0 1 1 1 1],[ 1 -1 -1 0 1 2 1],[-1 -1 -1 -1 0 1 -1],[-3 -2 -1 -2 -1 0 -3],[ 1 -1 -1 -1 1 3 0]] |
| Primitive based matrix |
[[ 0 3 1 -1 -1 -1 -1],[-3 0 -1 -1 -2 -2 -3],[-1 1 0 -1 -1 -1 -1],[ 1 1 1 0 1 1 1],[ 1 2 1 -1 0 1 1],[ 1 2 1 -1 -1 0 1],[ 1 3 1 -1 -1 -1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
| Phi over symmetry |
[-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
| Phi of -K |
[-1,-1,-1,-1,1,3,-1,-1,-1,1,3,-1,-1,1,2,-1,1,2,1,1,1] |
| Phi of K* |
[-3,-1,1,1,1,1,1,1,2,2,3,1,1,1,1,-1,-1,-1,-1,-1,-1] |
| Phi of -K* |
[-1,-1,-1,-1,1,3,-1,-1,-1,1,3,-1,-1,1,2,-1,1,2,1,1,1] |
| Symmetry type of based matrix |
+ |
| u-polynomial |
-t^3+3t |
| Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
| Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
| Inner characteristic polynomial |
t^6+29t^4+25t^2+1 |
| Outer characteristic polynomial |
t^7+43t^5+63t^3+5t |
| Flat arrow polynomial |
-8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
| 2-strand cable arrow polynomial |
-1280*K1**4*K2**2 + 2752*K1**4*K2 - 4416*K1**4 - 128*K1**3*K3 + 2048*K1**2*K2**3 - 8992*K1**2*K2**2 - 192*K1**2*K2*K4 + 10000*K1**2*K2 - 64*K1**2*K3**2 - 4584*K1**2 + 256*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7152*K1*K2*K3 + 752*K1*K3*K4 + 64*K1*K4*K5 - 1248*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 1512*K2**2*K4 - 4166*K2**2 + 192*K2*K3*K5 + 8*K2*K4*K6 - 1808*K3**2 - 612*K4**2 - 56*K5**2 - 2*K6**2 + 4514 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}]] |
| If K is slice |
False |