Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,0,-1,0,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1363'] |
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863'] |
Outer characteristic polynomial of the knot is: t^7+44t^5+38t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1363'] |
2-strand cable arrow polynomial of the knot is: -320*K1**6 - 320*K1**4*K2**2 + 1856*K1**4*K2 - 4496*K1**4 + 544*K1**3*K2*K3 - 736*K1**3*K3 - 192*K1**2*K2**4 + 864*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5440*K1**2*K2**2 - 416*K1**2*K2*K4 + 8328*K1**2*K2 - 368*K1**2*K3**2 - 48*K1**2*K4**2 - 2748*K1**2 + 320*K1*K2**3*K3 - 832*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4584*K1*K2*K3 + 400*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 784*K2**4 - 192*K2**2*K3**2 - 48*K2**2*K4**2 + 752*K2**2*K4 - 2670*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 900*K3**2 - 144*K4**2 - 16*K5**2 - 2*K6**2 + 2846 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1363'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4145', 'vk6.4178', 'vk6.5383', 'vk6.5416', 'vk6.7513', 'vk6.7538', 'vk6.9014', 'vk6.9047', 'vk6.12419', 'vk6.12450', 'vk6.13349', 'vk6.13568', 'vk6.13601', 'vk6.14270', 'vk6.14719', 'vk6.14726', 'vk6.15201', 'vk6.15873', 'vk6.15882', 'vk6.30832', 'vk6.30863', 'vk6.32016', 'vk6.32047', 'vk6.33065', 'vk6.33098', 'vk6.33852', 'vk6.34311', 'vk6.48489', 'vk6.50274', 'vk6.53521', 'vk6.53949', 'vk6.54263'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U2O4O5U3U6U5O6U1U4 |
R3 orbit | {'O1O2O3U2O4O5U3U6U5O6U1U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U3O5U6U5U1O6O4U2 |
Gauss code of K* | O1O2O3U2O4O5U4U6U1O6U5U3 |
Gauss code of -K* | O1O2O3U1U4O5U3U5U6O4O6U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 -1 2 2 -1],[ 1 0 -1 0 2 2 0],[ 1 1 0 1 1 1 1],[ 1 0 -1 0 2 1 0],[-2 -2 -1 -2 0 1 -3],[-2 -2 -1 -1 -1 0 -2],[ 1 0 -1 0 3 2 0]] |
Primitive based matrix | [[ 0 2 2 -1 -1 -1 -1],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -1 -2 -2],[ 1 1 1 0 1 1 1],[ 1 2 1 -1 0 0 0],[ 1 2 2 -1 0 0 0],[ 1 3 2 -1 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,1,1,1,1,-1,1,2,2,3,1,1,2,2,-1,-1,-1,0,0,0] |
Phi over symmetry | [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,0,-1,0,-1,-1] |
Phi of -K | [-1,-1,-1,-1,2,2,-1,-1,-1,2,2,0,0,0,1,0,1,1,1,2,-1] |
Phi of K* | [-2,-2,1,1,1,1,-1,1,1,2,2,0,1,1,2,0,0,-1,0,-1,-1] |
Phi of -K* | [-1,-1,-1,-1,2,2,-1,0,0,1,2,1,1,1,1,0,2,2,2,3,-1] |
Symmetry type of based matrix | c |
u-polynomial | -2t^2+4t |
Normalized Jones-Krushkal polynomial | 2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+19w^2z+31w |
Inner characteristic polynomial | t^6+32t^4+22t^2+1 |
Outer characteristic polynomial | t^7+44t^5+38t^3+5t |
Flat arrow polynomial | 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial | -320*K1**6 - 320*K1**4*K2**2 + 1856*K1**4*K2 - 4496*K1**4 + 544*K1**3*K2*K3 - 736*K1**3*K3 - 192*K1**2*K2**4 + 864*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5440*K1**2*K2**2 - 416*K1**2*K2*K4 + 8328*K1**2*K2 - 368*K1**2*K3**2 - 48*K1**2*K4**2 - 2748*K1**2 + 320*K1*K2**3*K3 - 832*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4584*K1*K2*K3 + 400*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 784*K2**4 - 192*K2**2*K3**2 - 48*K2**2*K4**2 + 752*K2**2*K4 - 2670*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 900*K3**2 - 144*K4**2 - 16*K5**2 - 2*K6**2 + 2846 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}]] |
If K is slice | False |